Quantifying behind armor debris fragments from CTH using the interdisciplinary computing environment

被引:0
|
作者
Clarke, Jerry A. [1 ]
Mark, Eric R. [1 ]
机构
[1] AS ARL, Aberdeen Proving Ground, MD 21005 USA
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The multi-material, large deformation, strong shock wave, solid mechanics code CTH is heavily used for armor penetration applications. It would be extremely beneficial to be able to use this type of physics based simulation to produce a realistic behind armor debris (BAD) field as input to survivability and lethality codes. Utilizing the capabilities of the Interdisciplinary Computing Environment (ICE) we have developed a tool that is capable of identifying individual fragments in a CTH flat mesh or AMR calculation. Additionally, this tool produces an estimate of the volume (thus mass) and velocity of these arbitrarily shaped fragments, outputting the results into a text file that is suitable for use as input to survivability/lethality calculations.
引用
收藏
页码:98 / 101
页数:4
相关论文
共 18 条
  • [1] A MODEL FOR BEHIND ARMOR DEBRIS FROM EFP IMPACT
    Kim, H. S.
    Arnold, W.
    Hartmann, T.
    Rottenkolber, E.
    Klavzar, A.
    BALLISTICS 2011: 26TH INTERNATIONAL SYMPOSIUM ON BALLISTICS, VOL 1 AND VOL 2, 2011, : 1410 - 1419
  • [2] Measurement of behind-armor debris using cylindrical holograms
    Anderson, C
    Gordon, J
    Watts, D
    Marsh, J
    OPTICAL ENGINEERING, 1997, 36 (01) : 40 - 46
  • [3] Behind-armor debris from the impact of hypervelocity tungsten penetrators
    Pedersen, B.
    Bless, S.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2006, 33 (1-12) : 605 - 614
  • [4] Behind-Armor Fragments from Tungsten Rods Penetrating Steel
    Bless, S.
    Tolman, J.
    McDonald, J.
    PROCEEDINGS OF THE 12TH HYPERVELOCITY IMPACT SYMPOSIUM, 2013, 58 : 355 - 362
  • [5] A generalized method for one-way coupling of CTH and Lagrangian finite element codes with complex structures using the interdisciplinary computing environment
    Clarke, JA
    Namburu, RR
    USERS GROUP CONFERENCE, PROCEEDINGS, 2004, : 218 - 221
  • [6] Quantifying Marine Plastic Debris in a Beach Environment Using Spectral Analysis
    Guffogg, Jenna A.
    Blades, Samantha M.
    Soto-Berelov, Mariela
    Bellman, Chris J.
    Skidmore, Andrew K.
    Jones, Simon D.
    REMOTE SENSING, 2021, 13 (22)
  • [7] Using parallel computing for the display and simulation of the space debris environment
    Moeckel, M.
    Wiedemann, C.
    Flegel, S.
    Gelhaus, J.
    Voersmann, P.
    Klinkrad, H.
    Krag, H.
    ADVANCES IN SPACE RESEARCH, 2011, 48 (01) : 173 - 183
  • [8] Shape Description of Behind-armor Debris Cloud from Vertical Penetration of Target Plate by EFP
    Huang X.-N.
    Li W.-B.
    Guo T.-F.
    Li W.-B.
    Wang X.-M.
    Hanneng Cailiao/Chinese Journal of Energetic Materials, 2020, 28 (11): : 1068 - 1075
  • [9] Uranium Dioxides and Debris Fragments Released to the Environment with Cesium-Rich Microparticles from the Fukushima Daiichi Nuclear Power Plant
    Ochiai, Asumi
    Imoto, Junpei
    Suetake, Mizuki
    Komiya, Tatsuki
    Furuki, Genki
    Ikehara, Ryohei
    Yamasaki, Shinya
    Law, Gareth T. W.
    Ohnuki, Toshihiko
    Grambow, Bernd
    Ewing, Rodney C.
    Utsunomiya, Satoshi
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (05) : 2586 - 2594
  • [10] Uranium dioxides and debris fragments released to the environment with cesium-rich microparticles from the Fukushima Daiichi Nuclear Power Plant
    Utsunomiya, Satoshi
    Ochiai, Asumi
    Suetake, Mizuki
    Komiya, Tatsuki
    Yamasaki, Shinya
    Law, Gareth
    Grambow, Bernd
    Ohnuki, Toshihiko
    Ewing, Rodney
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256