Sharp upper bounds for splitting of separatrices near a simple resonance

被引:2
|
作者
Rudnev, M [1 ]
Ten, V [1 ]
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
来源
REGULAR & CHAOTIC DYNAMICS | 2004年 / 9卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1070/RD2004v009n03ABEH000282
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
General theory for the splitting of separatrices near simple resonances of near-Liouville-integrable Hamiltonian systems is developed in the convex real-analytic setting. A generic estimate [GRAPHICS] is proved for the Fourier coefficients of the splitting distance measure G(phi), phi epsilon T-n, describing the intersections of Lagrangian manifolds, asymptotic to invariant n-tori, epsilon being the perturbation parameter. The constants omega epsilon R-n, c(1) sigma > 0, c(2) epsilon R-n are characteristic of the given problem (the Hamiltonian and the resonance), cannot be improved and can be calculated explicitly, given an example. The theory allows for optimal parameter dependencies in the smallness condition for epsilon.
引用
收藏
页码:299 / 336
页数:38
相关论文
共 50 条