On the sharp oscillation criteria for half-linear second-order differential equations with several delay arguments

被引:14
|
作者
Chatzarakis, George E. [1 ]
Grace, Said R. [2 ]
Jadlovska, Irena [3 ]
机构
[1] Sch Pedag & Technol Educ ASPETE Marousi, Dept Elect & Elect Engn Educators, Athens 15122, Greece
[2] Cairo Univ, Dept Engn Math, Fac Engn, Giza 12221, Egypt
[3] Tech Univ Kosice, Fac Elect Engn & Informat, Dept Math & Theoret Informat, Letna 9, Kosice 04200, Slovakia
关键词
Second-order differential equation; Several delay arguments; Half-linear; Oscillation; DYNAMIC EQUATIONS; PAPER;
D O I
10.1016/j.amc.2020.125915
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, we offer a qualitatively unimprovable oscillation result for half-linear several delay second-order differential equations, which improves and generalizes the one from the very recent study [8]. The sharpness of our newly obtained criterion is illustrated via Euler-type half-linear several delay differential equations. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Oscillation criteria for second-order half-linear differential equations
    Manojlovic, JV
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1999, 30 (5-6) : 109 - 119
  • [2] A sharp oscillation result for second-order half-linear noncanonical delay differential equations
    Dzurina, Jozef
    Jadlovska, Irena
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (46) : 1 - 14
  • [3] On The Oscillation of Second-order Half-linear Delay Differential Equations
    Li, Tongxing
    Han, Zhenlai
    Zhang, Chenghui
    [J]. PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 602 - 605
  • [4] Oscillation Criteria of Second-order Half-linear Delay Difference Equations
    Saker, S. H.
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2005, 45 (04): : 579 - 594
  • [5] Oscillation criteria for second order half-linear differential equations with functional arguments
    Chern, JL
    Lian, WC
    Yeh, CC
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 1996, 48 (3-4): : 209 - 216
  • [6] Oscillation criteria for second order half-linear differential equations with deviating arguments
    Agarwal, RP
    Grace, SR
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2002, 9 (02): : 217 - 224
  • [7] Interval criteria for oscillation of second-order half-linear differential equations
    Wang, QR
    Yang, QG
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 291 (01) : 224 - 236
  • [8] Criteria for Oscillation of Half-Linear Functional Differential Equations of Second-Order
    Almarri, Barakah
    Moaaz, Osama
    Muhib, Ali
    [J]. AXIOMS, 2022, 11 (12)
  • [9] A sharp oscillation criterion for second-order half-linear advanced differential equations
    G. E. Chatzarakis
    S. R. Grace
    I. Jadlovská
    [J]. Acta Mathematica Hungarica, 2021, 163 : 552 - 562
  • [10] A sharp oscillation criterion for second-order half-linear advanced differential equations
    Chatzarakis, G. E.
    Grace, S. R.
    Jadlovska, I
    [J]. ACTA MATHEMATICA HUNGARICA, 2021, 163 (02) : 552 - 562