Domain wall propagation tuning in magnetic nanowires through geometric modulation

被引:23
|
作者
Arzuza, L. C. C. [1 ,2 ]
Lopez-Ruiz, R. [1 ]
Salazar-Aravena, D. [1 ,3 ]
Knobel, M. [1 ,4 ]
Beron, F. [1 ]
Pirota, K. R. [1 ]
机构
[1] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083859 Campinas, SP, Brazil
[2] Univ Costa, Dept Ciencias Nat & Exactas, Calle 58 55-66, Barranquilla, Colombia
[3] Univ Tarapaca, Fac Ciencias, Dept Fis, Arica 1000007, Chile
[4] Brazilian Nanotechnol Natl Lab, CNPEM, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
MAGNETOSTATIC INTERACTIONS; NICKEL NANOWIRES; VORTEX-CORE; REVERSAL; ARRAYS; ALUMINA; FIELD; ELECTRODEPOSITION; MICROWIRES; DYNAMICS;
D O I
10.1016/j.jmmm.2017.01.071
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The magnetic behavior of nickel modulated nanowires embedded in porous alumina membranes is investigated. Their diameters exhibit a sharp transition between below (35 nm) and above (52 nm) the theoretical limit for transverse and vortex domain walls. Magnetic hysteresis loops and first-order reversal curves (FORCs) were measured on several ordered nanowire arrays with different wide-narrow segment lengths ratio and compared with those from homogenous nanowires. The experimental magnetic response evidences a rather complex susceptibility behavior for nanowires with modulated diameter. Micromagnetic simulations on isolated and first-neighbors arrays of nanowires show that the domain wall structure, which depends on the segment diameter, suffers a transformation while crossing the diameter modulation, but without any pinning. The experimental array magnetic behavior can be ascribed to a heterogeneous stray field induced by the diameter modulation, yielding a stronger interaction field at the wide extremity than at the narrow one. The results evidence the possibility to control the domain wall propagation and morphology by modulating the lateral aspect of the magnetic entity. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:309 / 317
页数:9
相关论文
共 50 条
  • [1] Magnetic field driven domain-wall propagation in magnetic nanowires
    Wang, X. R.
    Yan, P.
    Lu, J.
    He, C.
    ANNALS OF PHYSICS, 2009, 324 (08) : 1815 - 1820
  • [2] Magnetic domain wall propagation in nanowires under transverse magnetic fields
    Bryan, Matthew T.
    Schrefl, Thomas
    Atkinson, Del
    Allwood, Dan A.
    JOURNAL OF APPLIED PHYSICS, 2008, 103 (07)
  • [3] Magnetic domain wall propagation velocity in nanowires at high field
    Lu, J.
    Yan, P.
    Wang, X. R.
    2009 9TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2009, : 767 - 770
  • [4] High-field domain wall propagation velocity in magnetic nanowires
    Wang, X. R.
    Yan, P.
    Lu, J.
    EPL, 2009, 86 (06)
  • [5] Resonant transmission through a double domain wall in magnetic nanowires
    Dugaev, VK
    Berakdar, J
    Barnas, J
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 126 (2-3): : 254 - 257
  • [6] Tuning domain wall oscillation frequency in bent nanowires through a mechanical analogy
    Bittencourt, G. H. R.
    Carvalho-Santos, V. L.
    Altbir, D.
    Chubykalo-Fesenko, O.
    Moreno, R.
    NANOTECHNOLOGY, 2024, 35 (06)
  • [7] Fast Domain Wall Propagation under an Optimal Field Pulse in Magnetic Nanowires
    Sun, Z. Z.
    Schliemann, J.
    PHYSICAL REVIEW LETTERS, 2010, 104 (03)
  • [8] Domain wall propagation in magnetic nanowires by spin-polarized current injection
    Vernier, N
    Allwood, DA
    Atkinson, D
    Cooke, MD
    Cowbu, RP
    EUROPHYSICS LETTERS, 2004, 65 (04): : 526 - 532
  • [9] Generation of local magnetic fields at megahertz rates for the study of domain wall propagation in magnetic nanowires
    Bergman, Bastiaan
    Moriya, Rai
    Hayashi, Masamitsu
    Thomas, Luc
    Tyberg, Christy
    Lu, Yu
    Joseph, Eric
    Rothwell, Mary-Beth
    Hummel, John
    Gallagher, William J.
    Koopmans, Bert
    Parkin, Stuart S. P.
    APPLIED PHYSICS LETTERS, 2009, 95 (26)
  • [10] Domain wall cloning in magnetic nanowires
    Allwood, D. A.
    Xiong, Gang
    Cowburn, R. P.
    JOURNAL OF APPLIED PHYSICS, 2007, 101 (02)