Affine-invariant Recognition of Handwritten Characters via Accelerated KL Divergence Minimization

被引:0
|
作者
Wakahara, Toru [1 ]
Yamashita, Yukihiko [2 ]
机构
[1] Hosei Univ, Fac Comp & Informat Sci, 3-7-2 Kajino Cho, Koganei, Tokyo 1848584, Japan
[2] Tokyo Inst Technol, Grad Sch Engn & Sci, Meguro Ku, Tokyo 1528550, Japan
关键词
affine-invariant image matching; Gaussian kernel density estimation; KL divergence; character recognition; NUMERAL RECOGNITION;
D O I
10.1109/ICDAR.2011.221
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new, affine-invariant image matching technique via accelerated KL (Kullback-Leibler) divergence minimization. First, we represent an image as a probability distribution by setting the sum of pixel values at one. Second, we introduce affine parameters into either of the two images' probability distributions using the Gaussian kernel density estimation. Finally, we determine optimal affine parameters that minimize KL divergence via an iterative method. In particular, without using such conventional nonlinear optimization techniques as the Levenberg-Marquardt method we devise an accelerated iterative method adapted to the KL divergence minimization problem through effective linear approximation. Recognition experiments using the handwritten numeral database IPTP CDROM1B show that the proposed method achieves a much higher recognition rate of 91.5% at suppressed computational cost than that of 83.7% obtained by a simple image matching method based on a normal KL divergence.
引用
收藏
页码:1095 / 1099
页数:5
相关论文
共 41 条
  • [1] Affine-invariant recognition of gray-scale characters using global affine transformation correlation
    Wakahara, T
    Kimura, Y
    Tomono, A
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (04) : 384 - 395
  • [2] OPTIMAL AFFINE-INVARIANT SMOOTH MINIMIZATION ALGORITHMS
    d'Aspremont, Alexandre
    Guzman, Cristobal
    Jaggi, Martin
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (03) : 2384 - 2405
  • [3] Affine-invariant character recognition by progressive removing
    Iwamura, Masakazu
    Horimatsu, Akira
    Niwa, Ryo
    Kise, Koichi
    Uchida, Seiichi
    Omachi, Shinichiro
    ELECTRICAL ENGINEERING IN JAPAN, 2012, 180 (02) : 55 - 63
  • [4] Black-box attacks on face recognition via affine-invariant training
    Sun, Bowen
    Su, Hang
    Zheng, Shibao
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (15): : 8549 - 8564
  • [5] Black-box attacks on face recognition via affine-invariant training
    Bowen Sun
    Hang Su
    Shibao Zheng
    Neural Computing and Applications, 2024, 36 : 8549 - 8564
  • [6] Similarity Invariant Classification of Events by KL Divergence Minimization
    Khokhar, Salman
    Saleemi, Imran
    Shah, Mubarak
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 1903 - 1910
  • [7] Pictorial recognition using affine-invariant spectral signatures
    BenArie, J
    Wang, ZQ
    1997 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1997, : 34 - 39
  • [8] Affine-invariant shape recognition using Grassmann manifold
    Liu, Yun-Peng
    Li, Guang-Wei
    Shi, Ze-Lin
    Zidonghua Xuebao/Acta Automatica Sinica, 2012, 38 (02): : 248 - 258
  • [9] Iconic representation and recognition using Affine-Invariant Spectral Signatures
    BenArie, J
    Wang, ZQ
    Rao, KR
    IMAGE UNDERSTANDING WORKSHOP, 1996 PROCEEDINGS, VOLS I AND II, 1996, : 1277 - 1285
  • [10] Affine-invariant local descriptors and neighborhood statistics for texture recognition
    Lazebnik, S
    Schmid, C
    Ponce, J
    NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, 2003, : 649 - 655