An Entropy Stable Finite Volume Scheme for the Equations of Shallow Water Magnetohydrodynamics

被引:12
|
作者
Winters, Andrew R. [1 ]
Gassner, Gregor J. [1 ]
机构
[1] Univ Cologne, Math Inst, D-50931 Cologne, Germany
关键词
Nonlinear hyperbolic conservation law; Nonlinear hyperbolic balance law; Shallow water magnetohydrodynamics; Finite volume; Entropy conservation; Entropy stability; NUMERICAL VISCOSITY; CONSERVATION-LAWS; SOLAR TACHOCLINE; SYSTEMS;
D O I
10.1007/s10915-015-0092-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we design an entropy stable, finite volume approximation for the shallow water magnetohydrodynamics (SWMHD) equations. The method is novel as we design an affordable analytical expression of the numerical interface flux function that exactly preserves the entropy, which is also the total energy for the SWMHD equations. To guarantee the discrete conservation of entropy requires a special treatment of a consistent source term for the SWMHD equations. With the goal of solving problems that may develop shocks, we determine a dissipation term to guarantee entropy stability for the numerical scheme. Numerical tests are performed to demonstrate the theoretical findings of entropy conservation and robustness.
引用
收藏
页码:514 / 539
页数:26
相关论文
共 50 条
  • [1] An Entropy Stable Finite Volume Scheme for the Equations of Shallow Water Magnetohydrodynamics
    Andrew R. Winters
    Gregor J. Gassner
    Journal of Scientific Computing, 2016, 67 : 514 - 539
  • [2] High resolution entropy stable scheme for shallow water equations
    Cheng, Xiaohan
    Nie, Yufeng
    PROCEEDINGS OF THE 2015 INTERNATIONAL SYMPOSIUM ON COMPUTERS & INFORMATICS, 2015, 13 : 2078 - 2085
  • [3] Entropy Stable Finite Volume Approximations for Ideal Magnetohydrodynamics
    Derigs D.
    Gassner G.J.
    Walch S.
    Winters A.R.
    Jahresbericht der Deutschen Mathematiker-Vereinigung, 2018, 120 (3) : 153 - 219
  • [4] High-order accurate entropy stable finite difference schemes for the shallow water magnetohydrodynamics
    Duan, Junming
    Tang, Huazhong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 431
  • [5] Correction to: Entropy Stable Finite Volume Approximations for Ideal Magnetohydrodynamics
    Dominik Derigs
    Gregor J. Gassner
    Stefanie Walch
    Andrew R. Winters
    Jahresbericht der Deutschen Mathematiker-Vereinigung, 2018, 120 (4) : 291 - 292
  • [7] A Characteristic-Based Finite Volume Scheme for Shallow Water Equations
    Yan Guo
    Ru-xun Liu
    Ya-li Duan
    Yuan Li
    Journal of Hydrodynamics, 2009, 21 : 531 - 540
  • [8] A CHARACTERISTIC-BASED FINITE VOLUME SCHEME FOR SHALLOW WATER EQUATIONS
    GUO Yan Department of Mathematics
    Journal of Hydrodynamics, 2009, 21 (04) : 531 - 540
  • [9] A CHARACTERISTIC-BASED FINITE VOLUME SCHEME FOR SHALLOW WATER EQUATIONS
    Guo Yan
    Liu Ru-xun
    Duan Ya-li
    Li Yuan
    JOURNAL OF HYDRODYNAMICS, 2009, 21 (04) : 531 - 540
  • [10] Second Order Finite Volume Scheme for Shallow Water Equations on Manifolds
    Carlino, Michele Giuliano
    Gaburro, Elena
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094