SPECTRAL-SPATIAL DNA ENCODING DISCRIMINATIVE CLASSIFIER FOR HYPERSPECTRAL REMOTE SENSING IMAGERY

被引:0
|
作者
Ma, Ailong [1 ,2 ]
Zhong, Yanfei [1 ,2 ]
Zhao, Bei [1 ,2 ]
Jiao, Hongzan [3 ]
Zhang, Liangpei [1 ,2 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Peoples R China
[3] Wuhan Univ, Sch Urban Design, Wuhan 430079, Peoples R China
关键词
hyperspectral remote sensing image; DNA encoding; classification;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral remote sensing image classification is one of the most challenging tasks. In our previous work, motivated by the similarity between the structures of DNA and hyperspectral remote sensing images, a DNA matching mechanism was used to transform the hyperspectral remote sensing image into a DNA cube for classification. However, the above DNA encoding strategy lacks the process of encoding accurate spectral and spatial feature into the DNA cube, resulting in unsatisfying classification performance. In this paper, a spectral-spatial DNA encoding strategy for encoding accurate spectral and spatial feature of hyperspectral remote sensing image is proposed. In the spectral dimension, the first-order spectral curve is encoded into the DNA cube, while in the spatial dimension, the principal components or their corresponding texture feature (GLCM) are encoded into the DNA cube. Finally, different with the previous DNA encoding classifier using genetic algorithm (GA), the paper combines the discriminative classifier (i.e. SVM) with spectral-spatial DNA encoding to improve classification performance for hyperspectral remote sensing imagery. The experimental results confirmed the effectiveness of the newly devised DNA encoding strategy and the discriminative classifier in classifying the DNA cube.
引用
收藏
页码:1710 / 1713
页数:4
相关论文
共 50 条
  • [1] Low-Rank and Spectral-Spatial Sparse Unmixing for Hyperspectral Remote Sensing Imagery
    Li, Fan
    [J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [2] LOCAL SPECTRAL-SPATIAL CLUSTERING FOR REMOTE SENSING IMAGERY
    Ma, Ailong
    Zhong, Yanfei
    Jiao, Hongzan
    Zhang, Liangpei
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5130 - 5133
  • [3] DGSSC: A Deep Generative Spectral-Spatial Classifier for Imbalanced Hyperspectral Imagery
    Xi, Bobo
    Li, Jiaojiao
    Diao, Yan
    Li, Yunsong
    Li, Zan
    Huang, Yan
    Chanussot, Jocelyn
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (04) : 1535 - 1548
  • [4] Semisupervised Subspace-Based DNA Encoding and Matching Classifier for Hyperspectral Remote Sensing Imagery
    Ma, Ailong
    Zhong, Yanfei
    Zhao, Bei
    Jiao, Hongzan
    Zhang, Liangpei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08): : 4402 - 4418
  • [5] An Unsupervised Spectral Matching Classifier Based on Artificial DNA Computing for Hyperspectral Remote Sensing Imagery
    Jiao, Hongzan
    Zhong, Yanfei
    Zhang, Liangpei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (08): : 4524 - 4538
  • [6] Multi-Probe Based Artificial DNA Encoding and Matching Classifier for Hyperspectral Remote Sensing Imagery
    Wu, Ke
    Zhao, Dong
    Zhong, Yanfei
    Du, Qian
    [J]. REMOTE SENSING, 2016, 8 (08)
  • [7] MULTISCALE SPECTRAL-SPATIAL CLASSIFICATION FOR HYPERSPECTRAL IMAGERY
    Long, Zhiling
    Du, Qian
    Younan, Nicolas H.
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1051 - 1054
  • [8] Spectral-Spatial Sparse Subspace Clustering for Hyperspectral Remote Sensing Images
    Zhang, Hongyan
    Zhai, Han
    Zhang, Liangpei
    Li, Pingxiang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (06): : 3672 - 3684
  • [9] An Improved Spectral-Spatial Classification Framework for Hyperspectral Remote Sensing Images
    Chen, Zhao
    Wang, Bin
    [J]. 2014 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), VOLS 1-2, 2014, : 532 - 536
  • [10] Spectral-Spatial Features Extraction of Hyperspectral Remote Sensing Oil Spill Imagery Based on Convolutional Neural Networks
    Hu, Tao
    Yuan, Jing
    Wang, Xiaodong
    Yan, Changxiang
    Ju, Xueping
    [J]. IEEE ACCESS, 2022, 10 : 127969 - 127983