Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes

被引:504
|
作者
Chan, Candace K. [2 ]
Patel, Reken N. [3 ]
O'Connell, Michael J. [4 ]
Korgel, Brian A. [3 ]
Cui, Yi [1 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[3] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA
[4] Sp2 Carbon, Morgan Hill, CA 95037 USA
关键词
silicon nanowires; carbon nanotubes; lithium-ion battery anodes; SOLID-ELECTROLYTE-INTERPHASE; CORE-SHELL NANOWIRES; HIGH-CAPACITY; COMPOSITE ELECTRODES; CARBON NANOTUBES; ENERGY-STORAGE; SI; NANOCOMPOSITE; BINDER; PERFORMANCE;
D O I
10.1021/nn901409q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Composite electrodes composed of silicon nanowires synthesized using the supercritical fluid-liquid-solid (SFLS) method mixed with amorphous carbon or carbon nanotubes were evaluated as Li-ion battery anodes. Carbon coating of the silicon nanowires using the pyrolysis of sugar was found to be crucial for making good electronic contact to the material. Using multiwalled carbon nanotubes as the conducting additive was found to be more effective for obtaining good cycling behavior than using amorphous carbon. Reversible capacities of 1500 mAh/g were observed for 30 cycles.
引用
收藏
页码:1443 / 1450
页数:8
相关论文
共 50 条
  • [1] Silicon nanowires for rechargeable lithium-ion battery anodes
    Peng, Kuiqing
    Jie, Jiansheng
    Zhang, Wenjun
    Lee, Shuit-Tong
    APPLIED PHYSICS LETTERS, 2008, 93 (03)
  • [2] Solution-Grown Germanium Nanowire Anodes for Lithium-Ion Batteries
    Chockla, Aaron M.
    Klavetter, Kyle C.
    Mullins, C. Buddie
    Korgel, Brian A.
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (09) : 4658 - 4664
  • [3] Solution-grown GeO2 nanoparticles with a nearly 100% yield as lithium-ion battery anodes
    Li, Guo-An
    Li, Wei-Chin
    Chang, Wei-Chung
    Tuan, Hsing-Yu
    RSC ADVANCES, 2016, 6 (101): : 98632 - 98638
  • [4] Solution-Grown Phosphorus-Hyperdoped Silicon Nanowires/Carbon Nanotube Bilayer Fabric as a High-Performance Lithium-Ion Battery Anode
    Chang, Che-Bin
    Tsai, Chun-Yu
    Chen, Kuan-Ting
    Tuan, Hsing-Yu
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (04) : 3160 - 3168
  • [5] Doped Silicon Nanowires for Lithium Ion Battery Anodes
    Salihoglu, Omer
    El Kahlout, Yasser
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2019, 22 (02):
  • [6] Ultrathin Graphdiyne Nanosheets Grown InSitu on Copper Nanowires and Their Performance as Lithium-Ion Battery Anodes
    Shang, Hong
    Zuo, Zicheng
    Li, Liang
    Wang, Fan
    Liu, Huibiao
    Li, Yongjun
    Li, Yuliang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (03) : 774 - 778
  • [7] Silicon nanowires used as the anode of a lithium-ion battery
    Prosini, Pier Paolo
    Rufoloni, Alessandro
    Rondino, Flaminia
    Santoni, Antonino
    NANOFORUM 2014, 2015, 1667
  • [8] Silicon/disordered carbon nanocomposites for lithium-ion battery anodes
    Guo, ZP
    Milin, E
    Wang, JZ
    Chen, J
    Liu, HK
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (11) : A2211 - A2216
  • [9] Nitrogen-Doped Graphitic Layers Deposited on Silicon Nanowires for Efficient Lithium-Ion Battery Anodes
    Cho, Yong Jae
    Kim, Han Sung
    Im, Hyungsoon
    Myung, Yoon
    Jung, Gyeong Bok
    Lee, Chi Woo
    Park, Jeunghee
    Park, Mi-Hee
    Cho, Jaephil
    Kang, Hong Seok
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (19): : 9451 - 9457
  • [10] Monocrystalline silicon nanowires and nanosheets as anodes of lithium-ion battery: synthesis in mass production and low cost
    Wang, Qi
    Chen, Zhao-Hui
    Xing, Li-Li
    MICRO & NANO LETTERS, 2013, 8 (07): : 336 - 339