Experimental Determination of the Sea Correlation Time Using GNSS-R Coherent Data

被引:30
|
作者
Valencia, Enric [1 ,2 ]
Camps, Adriano [1 ,2 ]
Fernando Marchan-Hernandez, Juan [1 ,2 ]
Rodriguez-Alvarez, Nereida [1 ,2 ]
Ramos-Perez, Isaac [1 ,2 ]
Bosch-Lluis, Xavier [1 ,2 ]
机构
[1] Univ Politecn Cataluna, Remote Sensing Lab, Dept Signal Theory & Commun, ES-08034 Barcelona, Spain
[2] IEEC CRAE UPC, Barcelona 08034, Spain
关键词
Correlation time; delay-Doppler map (DDM); Global Navigation Satellite Signals Reflectometry (GNSS-R); sea coherence time; sea state; MICROWAVE BACKSCATTER; OCEAN; SIGNALS; INTERFEROMETRY;
D O I
10.1109/LGRS.2010.2046135
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The feasibility of the Global Navigation Satellite Signal Reflectometry (GNSS-R) techniques has been proven for remote determination of sea state. When using GNSS-R techniques, coherent integration time is limited by the correlation time of the surface under observation which, in the case of the ocean, depends on sea state. In this letter, a new technique to retrieve the sea correlation time at L-band using GNSS-R coherent data is presented along with experimental results.
引用
收藏
页码:675 / 679
页数:5
相关论文
共 50 条
  • [1] Sea-State Determination Using GNSS-R Data
    Marchan-Hernandez, J. F.
    Valencia, E.
    Rodriguez-Alvarez, N.
    Ramos-Perez, I.
    Bosch-Lluis, X.
    Camps, A.
    Eugenio, Francisco
    Marcello, Javier
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (04) : 621 - 625
  • [2] DETECTION & SEPARATION OF COHERENT REFLECTIONS IN GNSS-R MEASUREMENTS USING CYGNSS DATA
    Loria, Eric
    O'Brien, Andrew
    Gupta, Inder J.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3995 - 3998
  • [3] Real-time sea-level monitoring using Kalman filtering of GNSS-R data
    Joakim Strandberg
    Thomas Hobiger
    Rüdiger Haas
    GPS Solutions, 2019, 23
  • [4] Real-time sea-level monitoring using Kalman filtering of GNSS-R data
    Strandberg, Joakim
    Hobiger, Thomas
    Haas, Rudiger
    GPS SOLUTIONS, 2019, 23 (03)
  • [5] Improving GNSS-R sea level determination through inverse modeling of SNR data
    Strandberg, Joakim
    Hobiger, Thomas
    Haas, Rudiger
    RADIO SCIENCE, 2016, 51 (08) : 1286 - 1296
  • [6] Retrieval of Sea Surface Rainfall Intensity Using Spaceborne GNSS-R Data
    Bu, Jinwei
    Yu, Kegen
    Han, Shuai
    Qian, Nijia
    Lin, Yiruo
    Wang, Jin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [7] Sea state monitoring using coastal GNSS-R
    Soulat, F
    Caparrini, M
    Germain, O
    Lopez-Dekker, P
    Taani, M
    Ruffini, G
    GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (21) : L213031 - 4
  • [8] Sea Ice Detection Using UK TDS-1 GNSS-R Data
    Alonso-Arroyo, Alberto
    Zavorotny, Valery U.
    Camps, Adriano
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (09): : 4989 - 5001
  • [9] Sea Ice Detection Using GNSS-R Data From TechDemoSat-1
    Cartwright, Jessica
    Banks, Christopher J.
    Srokosz, Meric
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2019, 124 (08) : 5801 - 5810
  • [10] Sea Ice Sensing From GNSS-R Data Using Convolutional Neural Networks
    Yan, Qingyun
    Huang, Weimin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (10) : 1510 - 1514