Quaternionic Contact Einstein Structures and the Quaternionic Contact Yamabe Problem

被引:7
|
作者
不详
机构
[1] University of Sofia, Institute of Mathematics, Bulgarian Academy of Sciences, blvd. James Bourchier 5, Sofia
[2] Department of Mathematics and Statistics, Masaryk University, Kotlarska 2, Brno
[3] Department of Mathematics and Statistics, University of New Mexico, Albuquerque, 87131-0001, NM
基金
美国国家科学基金会;
关键词
Yamabe equation; quaternionic contact structures; Einstein structures; PLURISUBHARMONIC-FUNCTIONS; KAHLER CONNECTIONS; GEOMETRY; EQUATIONS; METRICS; SPACES; MAPS; REGULARITY; MANIFOLDS; ALGEBRA;
D O I
10.1090/memo/1086
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A partial solution of the quaternionic contact Yamabe problem on the quaternionic sphere is given. It is shown that the torsion of the Biquard connection vanishes exactly when the trace-free part of the horizontal Ricci tensor of the Biquard connection is zero and this occurs precisely on 3-Sasakian manifolds. All conformal transformations sending the standard flat torsion-free quaternionic contact structure on the quaternionic Heisenberg group to a quaternionic contact structure with vanishing torsion of the Biquard connection are explicitly described. A '3-Hamiltonian form' of infinitesimal conformal automorphisms of quaternionic contact structures is presented.
引用
收藏
页码:1 / +
页数:80
相关论文
共 50 条
  • [1] The Yamabe problem on quaternionic contact manifolds
    Wei Wang
    [J]. Annali di Matematica Pura ed Applicata, 2007, 186 : 359 - 380
  • [2] The Yamabe problem on quaternionic contact manifolds
    Wang, Wei
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2007, 186 (02) : 359 - 380
  • [3] Quaternionic contact Einstein manifolds
    Ivanov, Stefan
    Minchev, Ivan
    Vassilev, Dimiter
    [J]. MATHEMATICAL RESEARCH LETTERS, 2016, 23 (05) : 1405 - 1432
  • [4] Extremals for the Sobolev inequality on the seven-dimensional quaternionic Heisenberg group and the quaternionic contact Yamabe problem
    Ivanov, Stefan
    Minchev, Ivan
    Vassilev, Dimiter
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (04) : 1041 - 1067
  • [5] Quaternionic Kahler and Spin(7) metrics arising from quaternionic contact Einstein structures
    de Andres, L. C.
    Fernandez, M.
    Ivanov, S.
    Santisteban, J. A.
    Ugarte, L.
    Vassilev, D.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (01) : 261 - 290
  • [6] The qc Yamabe problem on non-spherical quaternionic contact manifolds
    Ivanov, Stefan
    Petkov, Alexander
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 118 : 44 - 81
  • [7] Quaternionic Kähler and Spin(7) metrics arising from quaternionic contact Einstein structures
    L. C. de Andrés
    M. Fernández
    S. Ivanov
    J. A. Santisteban
    L. Ugarte
    D. Vassilev
    [J]. Annali di Matematica Pura ed Applicata, 2014, 193 : 261 - 290
  • [8] On the equivalence of quaternionic contact structures
    Ivan Minchev
    Jan Slovák
    [J]. Annals of Global Analysis and Geometry, 2018, 53 : 331 - 375
  • [9] On the equivalence of quaternionic contact structures
    Minchev, Ivan
    Slovak, Jan
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 53 (03) : 331 - 375
  • [10] Quaternionic contact structures in dimension 7
    Duchemin, David
    [J]. ANNALES DE L INSTITUT FOURIER, 2006, 56 (04) : 851 - 885