Large-scale motions in a plane wall jet

被引:18
|
作者
Gnanamanickam, Ebenezer P. [1 ]
Bhatt, Shibani [1 ]
Artham, Sravan [1 ]
Zhang, Zheng [1 ]
机构
[1] Embry Riddle Aeronaut Univ, Dept Aerosp Engn, Daytona Beach, FL 32114 USA
关键词
boundary layer structure; turbulent boundary layers; TURBULENT-BOUNDARY-LAYER; DIRECT NUMERICAL-SIMULATION; LARGE-EDDY SIMULATION; CHANNEL; INNER; SHEAR; PIPE; FLOW; VELOCITY; FEATURES;
D O I
10.1017/jfm.2019.559
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The plane wall jet (PWJ) is a wall-bounded flow in which a wall shear layer develops in the presence of extremely energetic flow structures of the outer free-shear layer. The structure of a PWJ, developing in still air, was studied with the focus on the large scales in the flow. Wall-normal hot-wire anemometry (HWA) measurements along with double-frame particle image velocimetry (PIV) measurements (wall-normal-streamwise plane) were carried out at streamwise distances up to 162b, where b is the slot width of the PWJ exit. The nominal PWJ Reynolds number based on exit parameters was Re-j approximate to 5940. Comparisons with a zero-pressure-gradient boundary layer (ZPGBL) at nominally matched friction Reynolds number Re-tau were also carried out as appropriate, to highlight key features of the PWJ structure. Consistent with previous work, the PWJ showed a dependence of the peak turbulent stresses on the jet exit Reynolds number. The turbulent production showed a peak corresponding to the near-wall cycle similar to the peak seen in the ZPGBL. However, another turbulent production peak was observed in the outer free-shear layer that was an order of magnitude larger than the inner one. Along with the change in sign of the viscous and Reynolds shear stresses, the PWJ was shown to have a region of very low turbulent production between these two peaks. The dissipation rate increased over the PWJ layer with a peak also in the outer region. Visualizations of the flow and two-point correlations reveal that the most energetic large-scale structures within a PWJ are vortical motions in the wall-normal-streamwise plane similar to those structures seen in free-shear layers. These structures are referred to as J (for jet) type structures. In addition two-point correlations reveal the existence of large-scale structures in the wall region which have a signature similar to those structures seen in canonical boundary layers. These structures are referred to as W (for wall) type structures. Instantaneous PIV realizations and flow visualizations reveal that these W type large-scale features are consistent with the paradigm of hairpin vortex packets in the wall region. The J type structures were seen to intrude well into the wall region while the W type structures were also seen to extend into the outer shear layer. Further, these large-scale structures were shown to modulate the amplitude of the finer scales of the flow.
引用
收藏
页码:239 / 281
页数:43
相关论文
共 50 条
  • [1] Theoretical model of large-scale eddy motion in plane wall jet flow
    Yang, Qin
    Lu, Li-Peng
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2008, 23 (05): : 830 - 833
  • [2] LARGE-SCALE STRUCTURES OF A TURBULENT PLANE JET
    OLER, JW
    MOALLEMI, MK
    GOLDSCHM, VW
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (08): : 1133 - 1133
  • [3] Sensing the turbulent large-scale motions with their wall signature
    Guemes, A.
    Discetti, S.
    Ianiro, A.
    PHYSICS OF FLUIDS, 2019, 31 (12)
  • [4] Identifying the Wall Signature of Large-Scale Motions with Extended POD
    Guemes, A.
    Vaquero, A.
    Flores, O.
    Discetti, S.
    Ianiro, A.
    PROGRESS IN TURBULENCE VIII, 2019, 226 : 75 - 80
  • [5] LARGE-SCALE MOTIONS IN SUN
    PIDDINGTON, JH
    SOLAR PHYSICS, 1971, 21 (01) : 4 - +
  • [6] Enhancing large-scale motions and turbulent transport in rotating plane Poiseuille flow
    Zhang, Shengqi
    Xia, Zhenhua
    Chen, Shiyi
    JOURNAL OF FLUID MECHANICS, 2024, 979
  • [7] Influence of Upstream Perturbations on Wall Heat Transfer via Large-Scale Motions
    Pulletikurthi, Venkatesh
    Dharmarathne, Suranga
    Hussain, Fazle
    Castillo, Luciano
    PROGRESS IN TURBULENCE VIII, 2019, 226 : 99 - 104
  • [8] LARGE-SCALE MOTIONS IN ELECTRICAL DISCHARGES
    UBEROI, MS
    CHOW, CY
    PHYSICS OF FLUIDS, 1977, 20 (11) : 1815 - 1820
  • [9] THE DYNAMICS OF LARGE-SCALE ATMOSPHERIC MOTIONS
    HOLTON, JR
    REVIEWS OF GEOPHYSICS, 1983, 21 (05) : 1021 - 1027
  • [10] GAIA: A WINDOW TO LARGE-SCALE MOTIONS
    Nusser, Adi
    Branchini, Enzo
    Davis, Marc
    ASTROPHYSICAL JOURNAL, 2012, 755 (01):