Li intercalation in graphite: A van der Waals density-functional study

被引:62
|
作者
Hazrati, E. [1 ]
de Wijs, G. A. [1 ]
Brocks, G. [2 ,3 ]
机构
[1] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[2] Univ Twente, Fac Sci & Technol, NL-7500 AE Enschede, Netherlands
[3] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
关键词
GENERALIZED GRADIENT APPROXIMATION; SURFACE PHONON-DISPERSION; TOTAL-ENERGY CALCULATIONS; LITHIUM INTERCALATION; HYDROGEN STORAGE; CONSTANTS; INSERTION; ELECTRODE; GRAPHENE; LIBH4;
D O I
10.1103/PhysRevB.90.155448
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Modeling layered intercalation compounds from first principles poses a problem, as many of their properties are determined by a subtle balance between van der Waals interactions and chemical or Madelung terms, and a good description of van der Waals interactions is often lacking. Using van der Waals density functionals we study the structures, phonons and energetics of the archetype layered intercalation compound Li-graphite. Intercalation of Li in graphite leads to stable systems with calculated intercalation energies of -0.2 to -0.3 eV/Li atom, (referred to bulk graphite and Li metal). The fully loaded stage 1 and stage 2 compounds LiC6 and Li1/2C6 are stable, corresponding to two-dimensional root 3 x root 3 lattices of Li atoms intercalated between two graphene planes. Stage N > 2 structures are unstable compared to dilute stage 2 compounds with the same concentration. At elevated temperatures dilute stage 2 compounds easily become disordered, but the structure of Li3/16C6 is relatively stable, corresponding to a root 7 x root 7 in-plane packing of Li atoms. First- principles calculations, along with a Bethe-Peierls model of finite temperature effects, allow for a microscopic description of the observed voltage profiles.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Potassium intercalation in graphite:: A van der Waals density-functional study
    Ziambaras, Eleni
    Kleis, Jesper
    Schroeder, Elsebeth
    Hyldgaard, Per
    [J]. PHYSICAL REVIEW B, 2007, 76 (15)
  • [2] Van der Waals density functional study of the energetics of alkali metal intercalation in graphite
    Wang, Zhaohui
    Selbach, Sverre M.
    Grande, Tor
    [J]. RSC ADVANCES, 2014, 4 (08) : 4069 - 4079
  • [3] van der Waals interactions in density-functional theory
    Andersson, Y
    Langreth, DC
    Lundqvist, BI
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (01) : 102 - 105
  • [4] Interface of graphane with copper: a van der Waals density-functional study
    Buonocore, Francesco
    Capasso, Andrea
    Lisi, Nicola
    [J]. MATERIALS RESEARCH EXPRESS, 2014, 1 (01):
  • [5] Interaction of boron with graphite: A van der Waals density functional study
    Liu, Juan
    Wang, Chen
    Liang, Tongxiang
    Lai, Wensheng
    [J]. APPLIED SURFACE SCIENCE, 2016, 379 : 402 - 410
  • [6] Nonempirical density-functional theory for van der Waals interactions
    Becke, Axel D.
    Arabi, Alya A.
    Kannemann, Felix O.
    [J]. CANADIAN JOURNAL OF CHEMISTRY, 2010, 88 (11) : 1057 - 1062
  • [7] Comparative van der Waals density-functional study of graphene on metal surfaces
    Hamada, Ikutaro
    Otani, Minoru
    [J]. PHYSICAL REVIEW B, 2010, 82 (15)
  • [8] DENSITY-FUNCTIONAL THEORY INCLUDING VAN-DER-WAALS FORCES
    LUNDQVIST, BI
    ANDERSSON, Y
    SHAO, H
    CHAN, S
    LANGRETH, DC
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1995, 56 (04) : 247 - 255
  • [9] Van der Waals density-functional study of 100% hydrogen coverage on bilayer graphene
    Mapasha, R. E.
    Andrew, R. C.
    Chetty, N.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2013, 78 : 1 - 8
  • [10] van der Waals Interactions in Density-Functional Theory: Intermolecular Complexes
    Kannemann, Felix O.
    Becke, Axel D.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (04) : 1081 - 1088