High-order discontinuous Galerkin solutions of internal low-Mach number turbulent flows

被引:2
|
作者
Covello, V. [1 ]
Nigro, A. [1 ]
De Bartolo, C. [1 ]
Florio, G. [1 ]
机构
[1] Univ Calabria, Dept Mech Energet & Management Engn, I-87036 Arcavacata Di Rende, CS, Italy
关键词
Computational Fluid Dynamics; Discontinuous Galerkin finite element method; RANS equations; k - omega turbulence model; internal flows; abrupt expansion; COMPUTATION;
D O I
10.1016/j.egypro.2014.01.057
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this work we apply the high-order Discontinuous Galerkin (DG) finite element method to internal low-Mach number turbulent flows. The method here presented is designed to improve the performance of the solution in the incompressible limit using an implicit scheme for the temporal integration of the compressible Reynolds Averaged Navier Stokes (RANS) equations. The performance of the scheme is demonstrated by solving a well-known test-case consisting of an abrupt axisymmetric expansion using various degrees of polynomial approximation. Computations with k-omega model are performed to assess the modelling capabilities, with high-order accurate DG discretizations of the RANS equations, in presence of non-equilibrium flow conditions. (C) 2013 The Authors. Published by Elsevier Ltd. access under CC BY-NC-ND license.
引用
收藏
页码:528 / 537
页数:10
相关论文
共 50 条
  • [1] A high-order discontinuous Galerkin solver for low Mach number flows
    Klein, B.
    Mueller, B.
    Kummer, F.
    Oberlack, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2016, 81 (08) : 489 - 520
  • [2] EFFICIENT HIGH-ORDER DISCONTINUOUS GALERKIN COMPUTATIONS OF LOW MACH NUMBER FLOWS
    Zeifang, Jonas
    Kaiser, Klaus
    Beck, Andrea
    Schuetz, Jochen
    Munz, Claus-Dieter
    COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2018, 13 (02) : 243 - 270
  • [3] A fully coupled high-order discontinuous Galerkin method for diffusion flames in a low-Mach number framework
    Gutierrez-Jorquera, Juan
    Kummer, Florian
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2022, 94 (04) : 316 - 345
  • [4] A high-order low-Mach number AMR construction for chemically reacting flows
    Safta, Cosmin
    Ray, Jaideep
    Najm, Habib N.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (24) : 9299 - 9322
  • [5] A high-order accurate discontinuous Galerkin finite element method for laminar low Mach number flows
    Nigro, A.
    Renda, S.
    De Bartolo, C.
    Hartmann, R.
    Bassi, F.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 72 (01) : 43 - 68
  • [6] Split form ALE discontinuous Galerkin methods with applications to under-resolved turbulent low-Mach number flows
    Krais, Nico
    Schnuecke, Gero
    Bolemann, Thomas
    Gassner, Gregor J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 421
  • [7] Conservative high-order finite-difference schemes for low-Mach number flows
    Nicoud, F
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 158 (01) : 71 - 97
  • [8] High-Order Discontinuous Galerkin Method for Computation of Turbulent Flows
    Wang, Li
    Anderson, W. Kyle
    Erwin, Taylor
    Kapadia, Sagar
    AIAA JOURNAL, 2015, 53 (05) : 1159 - 1171
  • [9] A parallel, high-order discontinuous Galerkin code for laminar and turbulent flows
    Landmann, Bjoern
    Kessler, Manuel
    Wagner, Siegfried
    Kraemer, Ewald
    COMPUTERS & FLUIDS, 2008, 37 (04) : 427 - 438
  • [10] A high-order Discontinuous Galerkin solver for unsteady incompressible turbulent flows
    Noventa, G.
    Massa, F.
    Bassi, F.
    Colombo, A.
    Franchina, N.
    Ghidoni, A.
    COMPUTERS & FLUIDS, 2016, 139 : 248 - 260