Fast Monte Carlo codes for occupational dosimetry in interventional radiology

被引:13
|
作者
Garcia Balcaza, V [1 ]
Camp, A. [1 ]
Badal, A. [2 ]
Andersson, M. [3 ]
Almen, A. [3 ]
Ginjaume, M. [1 ]
Duch, M. A. [1 ]
机构
[1] Univ Politecn Catalunya UPC, Inst Tecn Energet, Barcelona 08028, Spain
[2] US FDA, Div Imaging Diagnost & Software Reliabil, OSEL, CDRH, Silver Spring, MD USA
[3] Lund Univ, Dept Translat Med ITM, Med Radiat Phys, SE-20502 Malmo, Sweden
基金
欧盟地平线“2020”;
关键词
Monte Carlo simulations; PENELOPE; penEasyIR; MCGPU-IR; Interventional radiology; PHOTON TRANSPORT; RADIATION; SIMULATIONS; PENELOPE; EXPOSURE; OPERATOR; SYSTEM; STAFF;
D O I
10.1016/j.ejmp.2021.05.012
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Interventional radiology techniques cause radiation exposure both to patient and personnel. The radiation dose to the operator is usually measured with dosimeters located at specific points above or below the lead aprons. The aim of this study is to develop and validate two fast Monte Carlo (MC) codes for radiation transport in order to improve the assessment of individual doses in interventional radiology. The proposed methodology reduces the number of required dosemeters and provides immediate dose results. Methods: Two fast MC simulation codes, PENELOPE/penEasyIR and MCGPU-IR, have been developed. Both codes have been validated by comparing fast MC calculations with the multipurpose PENELOPE MC code and with measurements during a realistic interventional procedure. Results: The new codes were tested with a computation time of about 120 s to estimate operator doses while a standard simulation needs several days to obtain similar uncertainties. When compared with the standard calculation in simple set-ups, MCGPU-IR tends to underestimate doses (up to 5%), while PENELOPE/penEasyIR overestimates them (up to 18%). When comparing both fast MC codes with experimental values in realistic setups, differences are within 25%. These differences are within accepted uncertainties in individual monitoring. Conclusion: The study highlights the fact that computational dosimetry based on the use of fast MC codes can provide good estimates of the personal dose equivalent and overcome some of the limitations of occupational monitoring in interventional radiology. Notably, MCGPU-IR calculates both organ doses and effective dose, providing a better estimate of radiation risk.
引用
收藏
页码:166 / 174
页数:9
相关论文
共 50 条
  • [1] Dose assesment with fast Monte Carlo codes in interventional radiology
    Balcaza, V. Garcia
    Camp, A.
    Sanchez, R. M.
    Ginjaume, M.
    Duch, M. A.
    RADIATION PROTECTION DOSIMETRY, 2023, 199 (15-16) : 1813 - 1817
  • [2] Monte Carlo simulations of occupational radiation doses in interventional radiology
    Siiskonen, T.
    Tapiovaara, M.
    Kosunen, A.
    Lehtinen, M.
    Vartiainen, E.
    BRITISH JOURNAL OF RADIOLOGY, 2007, 80 (954): : 460 - 468
  • [3] A parametric study of occupational radiation dose in interventional radiology by Monte-Carlo simulations
    Abdelrahman, Mahmoud
    Lombardo, Pasquale
    Camp, Anna
    Duch, Maria A.
    Phillips, Christophe
    Seret, Alain
    Vanhavere, Filip
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2020, 78 : 58 - 70
  • [4] PERSONAL DOSIMETRY USING MONTE-CARLO SIMULATIONS FOR OCCUPATIONAL DOSE MONITORING IN INTERVENTIONAL RADIOLOGY: THE RESULTS OF A PROOF OF CONCEPT IN A CLINICAL SETTING
    Almen, A.
    Andersson, M.
    O'Connor, U.
    Abdelrahman, M.
    Camp, A.
    Garcia, V
    Duch, M. A.
    Ginjaume, M.
    Vanhavere, F.
    RADIATION PROTECTION DOSIMETRY, 2021, 195 (3-4) : 391 - 398
  • [5] MONTE CARLO CALCULATIONS ON EXTREMITY AND EYE LENS DOSIMETRY FOR MEDICAL STAFF AT INTERVENTIONAL RADIOLOGY PROCEDURES
    Carinou, E.
    Ferrari, P.
    Koukorava, C.
    Krim, S.
    Struelens, L.
    RADIATION PROTECTION DOSIMETRY, 2011, 144 (1-4) : 492 - 496
  • [6] Occupational dosimetry in real time. Benefits for interventional radiology
    Vano, E.
    Fernandez, J. M.
    Sanchez, R.
    RADIATION MEASUREMENTS, 2011, 46 (11) : 1262 - 1265
  • [7] COMPARISON OF DOUBLE DOSIMETRY ALGORITHMS FOR ESTIMATING THE EFFECTIVE DOSE IN OCCUPATIONAL DOSIMETRY OF INTERVENTIONAL RADIOLOGY STAFF
    Jarvinen, H.
    Buls, N.
    Clerinx, P.
    Miljanic, S.
    Nikodemova, D.
    Ranogajec-Komor, M.
    Struelens, L.
    d'Errico, F.
    RADIATION PROTECTION DOSIMETRY, 2008, 131 (01) : 80 - 86
  • [8] Comparison of Various Monte Carlo Codes for Brachytherapy Source Dosimetry
    Meigooni, A.
    Luerman, C.
    Perez-Calatayud, J.
    Ballester, F.
    Rivard, M.
    Sowards, K.
    Zehtabian, M.
    Walmsley, J.
    MEDICAL PHYSICS, 2009, 36 (06)
  • [9] Interventional Radiology and the Dosimetry Conundrum
    Reynolds, Alyssa
    Botkin, Crystal
    Frye, Sarah
    Gadani, Sameer
    Muzaffar, Razi
    Osman, Medhat
    JOURNAL OF NUCLEAR MEDICINE, 2019, 60
  • [10] Application of Monte Carlo calculation codes to the dosimetry of Boron Neutron Capture Enhancement of Fast Neutron Therapy (BNCEFNT)
    Bourhis-Martin, E
    Hachem, A
    Herault, J
    Paul, D
    Paquis, P
    RESEARCH AND DEVELOPMENT IN NEUTRON CAPTURE THERAPY, 2002, : 383 - 387