Spectral approximations on the triangle

被引:26
|
作者
Owens, RG [1 ]
机构
[1] Napier Univ, Dept Math, Edinburgh EH14 1DJ, Midlothian, Scotland
关键词
spectral approximations; cubature formulae; triangular spectral elements;
D O I
10.1098/rspa.1998.0189
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper Ive describe a new family of polynomials which are eigenfunctions of a singular Sturm-Liouville problem on the triangle T-2 = {(x, y) : x greater than or equal to 0, y greater than or equal to 0, x + y less than or equal to 1}. The polynomials are shown to be orthogonal over T-2 with respect to a unit a eight function, and may be used in approximations which are exponentially convergent for functions which are infinitely smooth in T-2. The zeros of the polynomials may be used in cubature formulae on T-2.
引用
收藏
页码:857 / 872
页数:16
相关论文
共 50 条
  • [1] Approximations of the spectral function
    Ankowski, Artur M.
    ACTA PHYSICA POLONICA B, 2006, 37 (08): : 2259 - 2267
  • [2] Spectral Approximations for Sibilant Classification
    Stranik, Adam
    Cmejla, Roman
    2011 INTERNATIONAL CONFERENCE ON APPLIED ELECTRONICS (AE), 2011,
  • [3] SPECTRAL APPROXIMATIONS OF A NORMAL OPERATOR
    BOULDIN, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 76 (02) : 279 - 284
  • [4] SPECTRAL APPROXIMATIONS BY THE HDG METHOD
    Gopalakrishnan, J.
    Li, F.
    Nguyen, N-C
    Peraire, J.
    MATHEMATICS OF COMPUTATION, 2015, 84 (293) : 1037 - 1059
  • [5] On Spectral Approximations of Unbounded Operators
    Marian Dmytryshyn
    Oleh Lopushansky
    Complex Analysis and Operator Theory, 2019, 13 : 3659 - 3673
  • [6] On Spectral Approximations of Unbounded Operators
    Dmytryshyn, Marian
    Lopushansky, Oleh
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (08) : 3659 - 3673
  • [7] Spectral approximations to PDE surfaces
    Bloor, MIG
    Wilson, MJ
    COMPUTER-AIDED DESIGN, 1996, 28 (02) : 145 - 152
  • [8] Error analysis of spectral method on a triangle
    Guo, Ben-yu
    Wang, Li-Lian
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 26 (04) : 473 - 496
  • [9] Error analysis of spectral method on a triangle
    Ben-yu Guo
    Li-Lian Wang
    Advances in Computational Mathematics, 2007, 26 : 473 - 496
  • [10] Spectral approximations to the fractional integral and derivative
    Changpin Li
    Fanhai Zeng
    Fawang Liu
    Fractional Calculus and Applied Analysis, 2012, 15 : 383 - 406