Godunov Method For Stefan Problems With Neumann And Robin Type Boundary Condition Using Dimensionless Enthalpy Formulation

被引:3
|
作者
Ihsan, A. F. [1 ]
Tuwankotta, J. M. [1 ]
机构
[1] Inst Teknol Bandung, Math Dept, Bandung, Indonesia
关键词
PERTURBATION SOLUTIONS; NUMERICAL-SOLUTION;
D O I
10.1063/5.0030769
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A Stefan problem is a boundary value problem where the position of one of the boundaries is time-dependent. In this article, we consider one-dimensional phase-change Stefan problems where the fixed boundary is Neumann-type and Robin-type. We solve the problem using a numerical approach by deriving dimensionless enthalpy formulation based on suitable finite difference approximation. Numerical schema is obtained by applying the Godunov method on the formulation. We use several cases of various functions for boundary conditions and small initial conditions. The result obtained provide important information to develop a currently unavailable exact solution or another approximation solution.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A numerical solution of the Stefan problem with a Neumann-type boundary condition by enthalpy method
    Esen, A
    Kutluay, S
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (02) : 321 - 329
  • [2] Godunov Method for Stefan Problems with Enthalpy Formulations
    Tarwidi, D.
    Pudjaprasetya, S. R.
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2013, 3 (02) : 107 - 119
  • [3] SUPERCOOLED STEFAN PROBLEM WITH A NEUMANN TYPE BOUNDARY CONDITION
    Briozzo, Adriana C.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [4] Nonlocal problems with Neumann and Robin boundary condition in fractional Musielak-Sobolev spaces
    Srati, M.
    Azroul, E.
    Benkirane, A.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (01)
  • [5] An application of the adomian decomposition method for inverse Stefan problem with Neumann's boundary condition
    Grzymkowski, R
    Slota, D
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 3, 2005, 3516 : 895 - 898
  • [6] Application of the variational iteration method for inverse Stefan problem with Neumann's boundary condition
    Slota, Damian
    COMPUTATIONAL SCIENCE - ICCS 2008, PT 1, 2008, 5101 : 1005 - 1012
  • [7] Efficient symmetric discretization for the Poisson, heat and Stefan-type problems with Robin boundary conditions
    Papac, Joseph
    Gibou, Frederic
    Ratsch, Christian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (03) : 875 - 889
  • [8] Enthalpy Method for Ablation-Type Moving Boundary Problems
    Hunter, Lawrence W.
    Kuttler, James R.
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 1991, 5 (02) : 240 - 242
  • [9] An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems
    You, Huaiqian
    Lu, Xin Yang
    Trask, Nathaniel
    Yu, Yue
    ESAIM: Mathematical Modelling and Numerical Analysis, 2021, 55
  • [10] An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems
    You, Huaiqian
    Lu, XinYang
    Task, Nathaniel
    Yu, Yue
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (04): : 1373 - 1413