HERMITIAN MATRICES OF THREE PARAMETERS: PERTURBING COALESCING EIGENVALUES AND A NUMERICAL METHOD

被引:0
|
作者
Dieci, Luca [1 ]
Pugliese, Alessandro [2 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Bari Aldo Moro, Dipartimento Matemat, I-70125 Bari, Italy
关键词
Hermitian matrix-valued functions; conical intersection; perturbed eigenproblem; diabolical points; SINGULAR-VALUES; INTERSECTIONS; PERTURBATION; DEGENERACIES; ALGORITHM; SURFACES; PHASE;
D O I
10.1090/mcom/2977
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider Hermitian matrix-valued functions of 3 (real) parameters, and are interested in generic coalescing points of eigenvalues, conical intersections. Unlike our previous works [L. Dieci, A. Papini and A. Pugliese, Approximating coalescing points for eigenvalues of Hermitian matrices of three parameters, SIAM J. Matrix Anal. Appl., 2013] and [L. Dieci and A. Pugliese, Hermitian matrices depending on three parameters: Coalescing eigenvalues, Linear Algebra Appl., 2012], where we worked directly with the Hermitian problem and monitored variation of the geometric phase to detect conical intersections inside a sphere-like region, here we consider the following construction: (i) Associate to the given problem a real symmetric problem, twice the size, all of whose eigenvalues are now (at least) double, (ii) perturb this enlarged problem so that, generically, each pair of consecutive eigenvalues coalesce along curves, and only there, (iii) analyze the structure of these curves, and show that there is a small curve, nearly planar, enclosing the original conical intersection point. We will rigorously justify all of the above steps. Furthermore, we propose and implement an algorithm following the above approach, and illustrate its performance in locating conical intersections.
引用
收藏
页码:2763 / 2790
页数:28
相关论文
共 50 条
  • [1] Hermitian matrices depending on three parameters: Coalescing eigenvalues
    Dieci, Luca
    Pugliese, Alessandro
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (11) : 4120 - 4142
  • [2] APPROXIMATING COALESCING POINTS FOR EIGENVALUES OF HERMITIAN MATRICES OF THREE PARAMETERS
    Dieci, Luca
    Papini, Alessandra
    Pugliese, Alessandro
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (02) : 519 - 541
  • [3] Continuous Decompositions and Coalescing Eigenvalues for Matrices Depending on Parameters
    Dieci, Luca
    Papini, Alessandra
    Pugliese, Alessandro
    Spadoni, Alessandro
    [J]. CURRENT CHALLENGES IN STABILITY ISSUES FOR NUMERICAL DIFFERENTIAL EQUATIONS, CETRARO, ITALY 2011, 2014, 2082 : 173 - 264
  • [4] A Numerical Method for Determining the Eigenvalues and Eigenvectors of Hermitian Matrices in The Real Operation
    Zhang, Zhi-Hai
    Lou, Xi-juan
    Pang, Pei-lin
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON APPLIED MATRIX THEORY, 2009, : 122 - 125
  • [5] Perturbing eigenvalues of nonnegative matrices
    Wang, Xuefeng
    Li, Chi-Kwong
    Poon, Yiu-Tung
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 498 : 3 - 20
  • [6] SUBSPACE METHOD FOR EIGENVALUES OF SUMS OF HERMITIAN MATRICES
    THERIANO.SE
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A67 - &
  • [7] Perturbing eigenvalues of nonnegative centrosymmetric matrices
    Diaz, Roberto C.
    Julio, Ana, I
    Linares, Yankis R.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (16): : 2670 - 2685
  • [8] RELATIVE EIGENVALUES OF HERMITIAN MATRICES
    HAN, SP
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 81 : 75 - 88
  • [9] NOTE ON EIGENVALUES OF HERMITIAN MATRICES
    SLEPIAN, D
    LANDAU, HJ
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1978, 9 (02) : 291 - 297
  • [10] EIGENVALUES OF SUMS OF HERMITIAN MATRICES
    HORN, A
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1962, 12 (01) : 225 - &