3AU-Net: Triple Attention U-Net for Retinal Vessel Segmentation

被引:4
|
作者
Jin, Logan
机构
关键词
deep learning; medical image; Fundus image processing; retinal vessel segmentation;
D O I
10.1109/ICCASIT50869.2020.9368524
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Retinal Vessel segmentation is an indispensable part of the task of the automatic detection of retinopathy through fundus images, while there are several challenges, such as lots of noise, low distinction between blood vessels and environment, and uneven distribution of thick and thin blood vessels. Deep learning-based methods represented by U-Net performs very well on the task of retinal vessel segmentation. As the attention mechanism has made breakthroughs in many computer vision tasks, it has attracted the attention from the researcher. This paper proposed a kind of U-Net network based on triple attention mechanism-3AU-Net to overcome the problems of retinal vessel segmentation. We follow the framework of U-Net 's full convolution and skip connection, integrating spatial attention mechanism with channel attention mechanism and context attention mechanism. Spatial attention allows the segmentation network to find the blood vessel region that needs attention, thereby suppressing noise. Channel attention can make the expression of features more diverse and highlight the feature channels with key information. The context attention can integrate the context information to make the network to focus on the key pixels. Experimental consequences have indicated that 3AU-Net can greatly improve the results of the segmentation of retinal blood vessels, and this method surpasses other deep learning-based methods in many indicators on the DRIVE and STARE fundus image data sets. On the DRIVE data set, the 3A-UNet model achieved excellent performance on multiple evaluation indicators, with an ACC score of 0.9592, an AUC score of 0.9770, and a sensitivity score of 0.8537.
引用
收藏
页码:612 / 615
页数:4
相关论文
共 50 条
  • [1] U-Net with Attention Mechanism for Retinal Vessel Segmentation
    Si, Ze
    Fu, Dongmei
    Li, Jiahao
    [J]. IMAGE AND GRAPHICS, ICIG 2019, PT II, 2019, 11902 : 668 - 677
  • [2] CHANNEL ATTENTION RESIDUAL U-NET FOR RETINAL VESSEL SEGMENTATION
    Guo, Changlu
    Szemenyei, Marton
    Hu, Yangtao
    Wang, Wenle
    Zhou, Wei
    Yi, Yugen
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1185 - 1189
  • [3] Factorized U-net for Retinal Vessel Segmentation
    Gurrola-Ramos, Javier
    Dalmau, Oscar
    Alarcon, Teresa
    [J]. PATTERN RECOGNITION, MCPR 2022, 2022, 13264 : 181 - 190
  • [4] Multiscale U-Net with Spatial Positional Attention for Retinal Vessel Segmentation
    Liu, Congjun
    Gu, Penghui
    Xiao, Zhiyong
    [J]. JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [5] Extended U-net for Retinal Vessel Segmentation
    Boudegga, Henda
    Elloumi, Yaroub
    Kachouri, Rostom
    Ben Abdallah, Asma
    Bedoui, Mohamed Hedi
    [J]. ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2022, 2022, 1653 : 564 - 576
  • [6] RESIDUAL U-NET FOR RETINAL VESSEL SEGMENTATION
    Li, Di
    Dharmawan, Dhimas Arief
    Ng, Boon Poh
    Rahardja, Susanto
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1425 - 1429
  • [7] CRAUNet: A cascaded residual attention U-Net for retinal vessel segmentation
    Dong, Fangfang
    Wu, Dengyang
    Guo, Chenying
    Zhang, Shuting
    Yang, Bailin
    Gong, Xiangyang
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 147
  • [8] PYRAMID U-NET FOR RETINAL VESSEL SEGMENTATION
    Zhang, Jiawei
    Zhang, Yanchun
    Xu, Xiaowei
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1125 - 1129
  • [9] MSR U-Net: An Improved U-Net Model for Retinal Blood Vessel Segmentation
    Kande, Giri Babu
    Ravi, Logesh
    Kande, Nitya
    Nalluri, Madhusudana Rao
    Kotb, Hossam
    Aboras, Kareem M.
    Yousef, Amr
    Ghadi, Yazeed Yasin
    Sasikumar, A.
    [J]. IEEE ACCESS, 2024, 12 : 534 - 551
  • [10] MSR U-Net: An Improved U-Net Model for Retinal Blood Vessel Segmentation
    Kande, Giri Babu
    Ravi, Logesh
    Kande, Nitya
    Nalluri, Madhusudana Rao
    Kotb, Hossam
    Aboras, Kareem M.
    Yousef, Amr
    Ghadi, Yazeed Yasin
    Sasikumar, A.
    [J]. IEEE Access, 2024, 12 : 534 - 551