Learning deficit in BDNF mutant mice

被引:384
|
作者
Linnarsson, S
Björklund, A
Ernfors, P
机构
[1] Karolinska Inst, Dept Mol Neurobiol, S-17177 Stockholm, Sweden
[2] Univ Lund, Dept Med Cell Res, S-22362 Lund, Sweden
关键词
neurotrophin; Morris water maze; gene targeting; synaptic plasticity;
D O I
10.1111/j.1460-9568.1997.tb01687.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Brain-derived neurotrophic factor (BDNF) has been implicated in the regulation of high-frequency synaptic transmission and long-term potentiation in the hippocampus, processes that are also thought to be involved in the learning of spatial tasks such as the Morris water maze. In order to determine whether BDNF is required for normal spatial learning, mice carrying a deletion in one copy of the BDNF gene were subjected to the Morris water maze task. Young adult BDNF mutant mice were significantly impaired compared with wild-type mice, requiring twice the number of days to reach full performance. Aged wild-type mice performed significantly worse than young wild-type mice and the effect was even more pronounced in the BDNF mutant mice, which did not learn at all. Although there was no difference in mean swimming speed between BDNF mutant and wild-type mice, we cannot exclude the possibility that developmental or peripheral deficits also contribute to the learning deficits in these mice. In situ hybridization and RNase protection analysis revealed that BDNF mRNA expression was indeed decreased in BDNF mutant mice. Furthermore, a pronounced effect of age on BDNF mRNA expression was seen, displayed as both a reduced level of mRNA expression and a reduced or entirely absent layer-specific expression pattern in the cerebral cortex of aged animals. Thus, our data suggest that BDNF expression may be linked to learning.
引用
收藏
页码:2581 / 2587
页数:7
相关论文
共 50 条
  • [1] SUPPRESSED EPILEPTOGENESIS IN BDNF MUTANT MICE
    KOKAIA, M
    ERNFORS, P
    KOKAIA, Z
    ELMER, E
    JAENISCH, R
    LINDVALL, O
    EXPERIMENTAL NEUROLOGY, 1995, 133 (02) : 215 - 224
  • [3] CEREBELLAR DEFECT, LEARNING DEFICIT AND IMPAIRMENT OF SYNAPTIC PLASTICITY IN MGLUR1 MUTANT MICE
    CONQUET, F
    BASHIR, Z
    DANIEL, H
    FERRAGUTI, F
    COLLINGRIDGE, G
    JOURNAL OF NEUROCHEMISTRY, 1995, 65 : S148 - S148
  • [4] Cell death in regenerating populations of neurons in BDNF mutant mice
    Linnarsson, S
    Willson, CA
    Ernfors, P
    MOLECULAR BRAIN RESEARCH, 2000, 75 (01): : 61 - 69
  • [5] Evaluation of nigrostriatal dopaminergic function in adult +/+ and ± BDNF mutant mice
    Dluzen, DE
    Gao, XM
    Story, GM
    Anderson, LI
    Kucera, J
    Walro, JM
    EXPERIMENTAL NEUROLOGY, 2001, 170 (01) : 121 - 128
  • [6] Functional redundancy and gustatory development in bdnf null mutant mice
    Cooper, D
    Oakley, B
    DEVELOPMENTAL BRAIN RESEARCH, 1998, 105 (01): : 79 - 84
  • [7] Alterations in nigrostriatal dopaminergic function within BDNF mutant mice
    Dluzen, DE
    Story, GM
    Xu, K
    Kucera, J
    Walro, JM
    EXPERIMENTAL NEUROLOGY, 1999, 160 (02) : 500 - 507
  • [8] Spatial learning deficit in aged heterozygous Cav2.1 channel mutant mice, rolling mouse Nagoya
    Takahashi, Eiki
    Niimi, Kimie
    EXPERIMENTAL GERONTOLOGY, 2009, 44 (04) : 274 - 279
  • [9] MOTOR LEARNING IN LURCHER MUTANT MICE
    LALONDE, R
    BRAIN RESEARCH, 1994, 639 (02) : 351 - 353
  • [10] SENSORIMOTOR LEARNING IN CEREBELLAR MUTANT MICE
    LALONDE, R
    FILALI, M
    BENSOULA, AN
    GUASTAVINO, JM
    LESTIENNE, F
    BEHAVIOR GENETICS, 1995, 25 (03) : 299 - 299