Weight aspect exponential sums for Fourier coefficients of cusp forms

被引:0
|
作者
Hou, Fei [1 ]
机构
[1] Xian Univ Technol, Sch Sci, Xian 710054, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2022年 / 199卷 / 03期
关键词
Holomorphic cusp forms; Explicit dependence; Fourier coefficients; Exponential sums; SELBERG L-FUNCTIONS; ADDITIVE TWISTS;
D O I
10.1007/s00605-022-01750-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k >= 2 be an even integer. Let f be a primitive holomorphic cusp form of weight k, with lambda(f) (n) being its n-th Fourier coefficient. We explicitly determine the dependence on the weight aspect by proving Sigma(n <= X) lambda(f)(n)e(n(2)alpha + n beta) << (Xk)(epsilon) X-21/22 k(31/22) uniformly for k, and any alpha, beta is an element of R, where the implied constant depends only on epsilon. In addition we obtain an analogue of the Prime Number Theorem associated to the Fourier coefficients of cusp forms Sigma(n <= X) Lambda(n)lambda(f)(n)e(n(2)alpha + n beta) << X exp (-c log X/root log X + log k) uniformly for k < X1/31-epsilon and any alpha, beta is an element of R, where the implied constant is absolute.
引用
收藏
页码:527 / 553
页数:27
相关论文
共 50 条