Electrochemical Performance of Nanosized Disordered LiVOPO4

被引:30
|
作者
Shi, Yong [1 ]
Zhou, Hui [1 ]
Seymour, Ieuan D. [6 ]
Britto, Sylvia [6 ]
Rana, Jatinkumar [2 ,5 ]
Wangoh, Linda W. [2 ,5 ]
Huang, Yiqing [1 ]
Yin, Qiyue [3 ,4 ]
Reeves, Philip J. [6 ]
Zuba, Mateusz [5 ]
Chung, Youngmin [1 ]
Omenya, Fredrick [1 ]
Chernova, Natasha A. [2 ]
Zhou, Guangwen [2 ,3 ,4 ]
Piper, Louis F. J. [2 ,5 ]
Grey, Clare P. [6 ]
Whittingham, M. Stanley [1 ,2 ]
机构
[1] SUNY Binghamton, Chem & Mat Sci & Engn, Binghamton, NY 13902 USA
[2] SUNY Binghamton, NECCES, Binghamton, NY 13902 USA
[3] SUNY Binghamton, Dept Mech Engn, Binghamton, NY 13902 USA
[4] SUNY Binghamton, Mat Sci & Engn Program, Binghamton, NY 13902 USA
[5] SUNY Binghamton, Dept Phys Appl Phys & Astron, Binghamton, NY 13902 USA
[6] Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England
来源
ACS OMEGA | 2018年 / 3卷 / 07期
关键词
SOLID-STATE NMR; LI-ION; THERMAL-STABILITY; CATHODE MATERIALS; BATTERY MATERIALS; MISCIBILITY GAP; LONG-LIFE; LI3VO4; ANODE; ENERGY;
D O I
10.1021/acsomega.8b00763
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
epsilon-LiVOPO4 is a promising multielectron cathode material for Li-ion batteries that can accommodate two electrons per vanadium, leading to higher energy densities. However, poor electronic conductivity and low lithium ion diffusivity currently result in low rate capability and poor cycle life. To enhance the electrochemical performance of epsilon-LiVOPO4, in this work, we optimized its solid-state synthesis route using in situ synchrotron X-ray diffraction and applied a combination of high-energy ball-milling with electronically and ionically conductive coatings aiming to improve bulk and surface Li diffusion. We show that high-energy ball-milling, while reducing the particle size also introduces structural disorder, as evidenced by Li-7 and P-31 NMR and X-ray absorption spectroscopy. We also show that a combination of electronically and ionically conductive coatings helps to utilize close to theoretical capacity for epsilon-LiVOPO4 at C/50 (1 C = 153 mA h g(-1)) and to enhance rate performance and capacity retention. The optimized epsilon-LiVOPO4/Li3VO4/acetylene black composite yields the high cycling capacity of 250 mA h g(-1) at C/5 for over 70 cycles.
引用
收藏
页码:7310 / 7323
页数:14
相关论文
共 50 条
  • [1] Rational synthesis and electrochemical performance of LiVOPO4 polymorphs
    Hidalgo, Marc FrancisV.
    Lin, Yuh-Chieh
    Grenier, Antonin
    Xiao, Dongdong
    Rana, Jatinkumar
    Tran, Richard
    Xin, Huolin
    Zuba, Mateusz
    Donohue, Jennifer
    Omenya, Fredrick O.
    Chu, Iek-Heng
    Wang, Zhenbin
    Li, XiangGuo
    Chernova, Natasha A.
    Chapman, Karena W.
    Zhou, Guangwen
    Piper, Louis
    Ong, Shyue Ping
    Whittingham, M. Stanley
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (14) : 8423 - 8432
  • [2] Electrochemical Performance of Cathode LiVOPO4 Doped with Mo and W
    Bustam, Mohamad Azmi
    Man, Zakaria
    Maitra, Saikat
    Ishihara, Tatsumi
    TRANSACTIONS OF THE INDIAN CERAMIC SOCIETY, 2013, 72 (02) : 108 - 112
  • [3] Phase stability and its impact on the electrochemical performance of VOPO4 and LiVOPO4
    Ling, Chen
    Zhang, Ruigang
    Mizuno, Fuminori
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (31) : 12330 - 12339
  • [4] Effects of Ti Doping on the Structural Stability and Enhanced Electrochemical Performance of α-LiVOPO4
    Lee, Seong-Hun
    Ryu, Kwang-Sun
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2018, 39 (11): : 1266 - 1272
  • [5] Electrochemical Performance of α-LiVOPO4/Carbon Composite Material Synthesized by Sol Gel Method
    Tang, Anping
    Shen, Jie
    Hu, Yongjun
    Xu, Guorong
    He, Donghua
    Yi, Qingfeng
    Peng, Ronghua
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (01) : A10 - A13
  • [6] Evaluation of α1-LiVOPO4, β-LiVOPO4, and α-LiVOPO4 Synthesized from a Same Precursor by Hydrothermal Method
    Nojima, Akinobu
    Sano, Atsushi
    Fujita, Shin
    Ohtsuki, Keitaro
    Okada, Shigeto
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (15) : A3731 - A3738
  • [7] Relating ε-LiVOPO4 performance to local environment dynamics and hysteresis
    Wiaderek, Kamila M.
    Borkiewicz, Olaf J.
    Chapman, Karena W.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : A280 - A280
  • [8] Nonstoichiometry and Defects in Hydrothermally Synthesized ε-LiVOPO4
    Chung, Youngmin
    Cassidy, Ellen
    Lee, Krystal
    Siu, Carrie
    Huang, Yiqing
    Omenya, Fredrick
    Rana, Jatinkumar
    Wiaderek, Kamila M.
    Chernova, Natasha A.
    Chapman, Karena W.
    Piper, Louis F. J.
    Whittingham, M. Stanley
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (07) : 4792 - 4800
  • [9] ε- and β-LiVOPO4: Phase Transformation and Electrochemistry
    Zhou, Hui
    Shi, Yong
    Xin, Fengxia
    Omenya, Fredrick
    Whittingham, M. Stanley
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (34) : 28537 - 28541
  • [10] Chemical and Electrochemical Lithiation of LiVOPO4 Cathodes for Lithium-Ion Batteries
    Harrison, Katharine L.
    Bridges, Craig A.
    Segre, Carlo U.
    Varnado, C. Daniel, Jr.
    Applestone, Danielle
    Bielawski, Christopher W.
    Paranthaman, Mariappan Parans
    Manthiram, Arumugam
    CHEMISTRY OF MATERIALS, 2014, 26 (12) : 3849 - 3861