The general structure of eigenvalues in nonlinear oscillators

被引:17
|
作者
Speliotopoulos, AD [1 ]
机构
[1] Higher Dimens Res Inc, St Paul, MN 55125 USA
来源
关键词
D O I
10.1088/0305-4470/33/20/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Hilbert spaces of bounded one-dimensional nonlinear oscillators are studied. It is shown that the eigenvalue structure of all such oscillators have the same general form. They depend only on the ground state energy of the system and a single function λ(H) of the Hamiltonian operator H. It is also found that the Hilbert space of the nonlinear oscillator is unitarily inequivalent to the Hilbert space of the simple harmonic oscillator, providing an explicit example of Haag's theorem. A number operator for the nonlinear oscillator is constructed and the general form of the partition function and average energy of a nonlinear oscillator in contact with a heat bath is determined. Connection with the WKB result in the semiclassical limit is made. The analysis is then applied to the case of the cursive Greek chi4 anharmonic oscillator as an explicit example.
引用
收藏
页码:3809 / 3823
页数:15
相关论文
共 50 条
  • [1] Synchronization in networks of general, weakly nonlinear oscillators
    Josic, K
    Peles, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (49): : 11801 - 11817
  • [2] Energy eigenvalues and squeezing properties of general systems of coupled quantum anharmonic oscillators
    Chung, N. N.
    Chew, L. Y.
    PHYSICAL REVIEW A, 2007, 76 (03):
  • [3] On the nonlocal symmetries of certain nonlinear oscillators and their general solution
    Bruzon, M. S.
    Gandarias, M. L.
    Senthilvelan, M.
    PHYSICS LETTERS A, 2011, 375 (33) : 2985 - 2987
  • [4] General nonlinear analysis of second-order oscillators
    Buonomo, A
    Lo Schiavo, A
    ELECTRONICS LETTERS, 2000, 36 (05) : 396 - 397
  • [5] Accurate eigenvalues of bounded oscillators
    Fernandez, Francisco M.
    PHYSICA SCRIPTA, 2008, 78 (01)
  • [6] Accurate analytical approximate solutions to general strong nonlinear oscillators
    Sun, W. P.
    Wu, B. S.
    NONLINEAR DYNAMICS, 2008, 51 (1-2) : 277 - 287
  • [7] Accurate analytical approximate solutions to general strong nonlinear oscillators
    W. P. Sun
    B. S. Wu
    Nonlinear Dynamics, 2008, 51 : 277 - 287
  • [8] STRUCTURE OF THE SPECTRUM AND ESTIMATES FOR THE EIGENVALUES OF NONLINEAR HOMOGENEOUS OPERATORS
    KARDASHOV, VR
    MATHEMATICS OF THE USSR-SBORNIK, 1983, 120 (3-4): : 349 - 363
  • [9] On the Reality of the Eigenvalues for a Class of -Symmetric Oscillators
    K. C. Shin
    Communications in Mathematical Physics, 2002, 229 : 543 - 564
  • [10] NONLINEAR EIGENVALUES
    MAY, EL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (07): : A658 - A658