COMPOSITION CONDITIONS IN THE TRIGONOMETRIC ABEL EQUATION

被引:0
|
作者
Gine, Jaume [1 ]
Grau, Maite [1 ]
Santallusia, Xavier [1 ]
机构
[1] Univ Lleida, Dept Matemat, Lleida 25001, Catalonia, Spain
来源
关键词
Center problem; Abel differential equation; universal centers; polynomial differential equations; DIFFERENTIAL-EQUATIONS; COMPOSITION CONJECTURES; SYSTEMS; CENTERS; CURVES; MAP;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we deal with the center problem for the trigonometric Abel equation d rho/d theta = a(1)(theta)rho(2) a(2)(theta)rho(3), where a1(theta) and a(2)(theta) are trigonometric polynomials in theta. This problem is closely connected with the classical Poincare center problem for planar polynomial vector fields.
引用
收藏
页码:133 / 144
页数:12
相关论文
共 50 条
  • [1] Weak and strong composition conditions for the Abel differential equation
    Pakovich, F.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2014, 138 (08): : 993 - 998
  • [2] Universal centers in the cubic trigonometric Abel equation
    Gine, Jaume
    Grau, Maite
    Santallusia, Xavier
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2014, (01) : 1 - 7
  • [3] Center and composition conditions for Abel differential equation, and rational curves
    Blinov M.
    Yomdin Y.
    Qualitative Theory of Dynamical Systems, 2001, 2 (1) : 111 - 127
  • [4] The composition conjecture for Abel equation
    Alwash, M. A. M.
    EXPOSITIONES MATHEMATICAE, 2009, 27 (03) : 241 - 250
  • [5] SOLUTIONS OF RICCATI-ABEL EQUATION IN TERMS OF THIRD ORDER TRIGONOMETRIC FUNCTIONS
    Yamaleev, Robert M.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2014, 45 (02): : 165 - 184
  • [6] Centers for Trigonometric Abel Equations
    Cima, Anna
    Gasull, Armengol
    Manosas, Francesc
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2012, 11 (01) : 19 - 37
  • [7] Solutions of Riccati-Abel equation in terms of third order trigonometric functions
    Robert M. Yamaleev
    Indian Journal of Pure and Applied Mathematics, 2014, 45 : 165 - 184
  • [8] Centers for Trigonometric Abel Equations
    Anna Cima
    Armengol Gasull
    Francesc Mañosas
    Qualitative Theory of Dynamical Systems, 2012, 11 : 19 - 37
  • [9] ABEL SUMMABILITY OF TRIGONOMETRIC SERIES
    MUKHOPADHYAY, SN
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1978, 17 (FEB): : 87 - 96
  • [10] Maximum number of limit cycles for Abel equation having coefficients with linear trigonometric functions
    Yu, Xiangqin
    Huang, Jianfeng
    Liu, Changjian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 410 : 301 - 318