Countably categorical coloured linear orders

被引:3
|
作者
Mwesigye, Feresiano [1 ]
Truss, John K. [1 ]
机构
[1] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
关键词
Coding tree; colours; coloured linear orderings; classification; N-0-categorical linear orderings;
D O I
10.1002/malq.200910005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a classification of (finite or countable) No-categorical coloured linear orders, generalizing Rosenstein's characterization of N-0-categorical linear orderings. We show that they can all be built from coloured singletons by concatenation and Q(n)-combinations (for n >= 1). We give a method using coding trees to describe all structures in our list. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:159 / 163
页数:5
相关论文
共 50 条
  • [1] Automorphism Groups of Countably Categorical Linear Orders are Extremely Amenable
    François Gilbert Dorais
    Steven Gubkin
    Daniel McDonald
    Manuel Rivera
    [J]. Order, 2013, 30 : 415 - 426
  • [2] Automorphism Groups of Countably Categorical Linear Orders are Extremely Amenable
    Dorais, Francois Gilbert
    Gubkin, Steven
    McDonald, Daniel
    Rivera, Manuel
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2013, 30 (02): : 415 - 426
  • [3] On countably saturated linear orders and certain class of countably saturated graphs
    Kostana, Ziemowit
    [J]. ARCHIVE FOR MATHEMATICAL LOGIC, 2021, 60 (1-2) : 189 - 209
  • [4] On countably saturated linear orders and certain class of countably saturated graphs
    Ziemowit Kostana
    [J]. Archive for Mathematical Logic, 2021, 60 : 189 - 209
  • [5] On Optimal Representatives of Finite Coloured Linear Orders
    F. Mwesigye
    J. K. Truss
    [J]. Order, 2019, 36 : 107 - 117
  • [6] Countably categorical theories
    V. G. Puzarenko
    [J]. Algebra and Logic, 2012, 51 : 241 - 258
  • [7] On Optimal Representatives of Finite Coloured Linear Orders
    Mwesigye, F.
    Truss, J. K.
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2019, 36 (01): : 107 - 117
  • [8] Countably categorical theories
    Puzarenko, V. G.
    [J]. ALGEBRA AND LOGIC, 2012, 51 (03) : 241 - 258
  • [9] CORES OF COUNTABLY CATEGORICAL STRUCTURES
    Bodirsky, Manuel
    [J]. LOGICAL METHODS IN COMPUTER SCIENCE, 2007, 3 (01)
  • [10] The core of a countably categorical structure
    Bodirsky, M
    [J]. STACS 2005, PROCEEDINGS, 2005, 3404 : 110 - 120