Differential systems of pure Gaussian type

被引:2
|
作者
Sabbah, C. [1 ]
机构
[1] Ecole Polytech, Ctr Math Laurent Schwartz, F-91128 Palaiseau, France
关键词
Laplace transformation; meromorphic connection; Stokes matrix; TRANSFORM;
D O I
10.1070/IM8308
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give the transformation rule for the Stokes data of the Laplace transform of a differential system of pure Gaussian type.
引用
收藏
页码:189 / 220
页数:32
相关论文
共 50 条
  • [1] Existence and Ulam Type Stability for Impulsive Fractional Differential Systems with Pure Delay
    Chen, Chaowen
    Li, Mengmeng
    FRACTAL AND FRACTIONAL, 2022, 6 (12)
  • [2] Type inference for pure type systems
    Severi, P
    INFORMATION AND COMPUTATION, 1998, 143 (01) : 1 - 23
  • [3] Pure patterns type systems
    Barthe, G
    Cirstea, H
    Kirchner, C
    Liquori, L
    ACM SIGPLAN NOTICES, 2003, 38 (01) : 250 - 261
  • [4] Modal Pure Type Systems
    Tijn Borghuis
    Journal of Logic, Language and Information, 1998, 7 (3) : 265 - 296
  • [5] Parameters in pure type systems
    Bloo, R
    Kamareddine, F
    Laan, T
    Nederpelt, R
    LATIN 2002: THEORETICAL INFORMATICS, 2002, 2286 : 371 - 385
  • [6] TYPING IN PURE TYPE SYSTEMS
    JUTTING, LSV
    INFORMATION AND COMPUTATION, 1993, 105 (01) : 30 - 41
  • [7] A NEW DIFFERENTIAL OPERATOR OF PURE WAVE TYPE
    LAGNESE, JE
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1965, 1 (02) : 171 - &
  • [8] A normal form for pure differential algebraic systems
    Trenn, Stephan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (04) : 1070 - 1084
  • [9] Preparation of Pure Gaussian States via Cascaded Quantum Systems
    Ma, Shan
    Woolley, Matthew J.
    Petersen, Ian R.
    Yamamoto, Naoki
    2014 IEEE CONFERENCE ON CONTROL APPLICATIONS (CCA), 2014, : 1970 - 1975
  • [10] A module calculus for pure type systems
    Courant, J
    TYPED LAMBDA CALCULI AND APPLICATIONS, 1997, 1210 : 112 - 128