Search-Trajectory Optimization: Part I, Formulation and Theory

被引:12
|
作者
Foraker, Joseph [1 ]
Royset, Johannes O. [2 ]
Kaminer, Isaac [2 ]
机构
[1] US Naval Acad, 572-C Holloway Rd, Annapolis, MD 21402 USA
[2] Naval Postgrad Sch, 1411 Cunningham Rd,700 Dyer Rd, Monterey, CA 93943 USA
关键词
Search theory; Continuous time-and-space search; Consistent approximations; Parameter-distributed optimal control; Force protection; TARGET; MOTION;
D O I
10.1007/s10957-015-0768-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We formulate a search-trajectory optimization problem, with multiple searchers looking for multiple targets in continuous time and space, as a parameter-distributed optimal control model. The problem minimizes the probability that all of the searchers fail to detect any of the targets during a planning horizon. We construct discretization schemes and prove that they lead to consistent approximations in the sense of E. Polak.
引用
收藏
页码:530 / 549
页数:20
相关论文
共 50 条
  • [1] Search-Trajectory Optimization: Part I, Formulation and Theory
    Joseph Foraker
    Johannes O. Royset
    Isaac Kaminer
    Journal of Optimization Theory and Applications, 2016, 169 : 530 - 549
  • [2] Search-Trajectory Optimization: Part II, Algorithms and Computations
    Joseph Foraker
    Johannes O. Royset
    Isaac Kaminer
    Journal of Optimization Theory and Applications, 2016, 169 : 550 - 567
  • [3] Search-Trajectory Optimization: Part II, Algorithms and Computations
    Foraker, Joseph
    Royset, Johannes O.
    Kaminer, Isaac
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 169 (02) : 550 - 567
  • [4] The practical application of a dynamic search-trajectory method for constrained global optimization
    Snyman, JA
    Geerthsen, KA
    IUTAM SYMPOSIUM ON OPTIMIZATION OF MECHANICAL SYSTEMS, 1996, 43 : 285 - 292
  • [5] Truncated Newton's optimization scheme for absorption and fluorescence optical tomography: Part I theory and formulation
    Roy, R
    Sevick-Muraca, EM
    OPTICS EXPRESS, 1999, 4 (10): : 353 - 371
  • [6] Reproducing kernel hierarchical partition of unity, part I - Formulation and theory
    Li, SF
    Liu, WK
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 45 (03) : 251 - 288
  • [7] Trajectory Splitting: A Distributed Formulation for Collision Avoiding Trajectory Optimization
    Wang, Changhao
    Bingham, Jeffrey
    Tomizuka, Masayoshi
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 8113 - 8120
  • [8] Multiple trajectory search for multiobjective optimization
    Tseng, Lin-Yu
    Chen, Chun
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 3609 - +
  • [9] Generalized Formulation for Trajectory Optimization in Patrolling Problems
    Ghadiry, Walaaeldin
    Habibi, Jalal
    Aghdam, Amir G.
    Zhang, Youmin
    2015 IEEE 28TH CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2015, : 231 - 236
  • [10] A Trajectory Optimization Formulation for Assistive Robotic Devices
    Rakshit, Sourav
    Akella, Srinivas
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 2068 - 2074