A recurrent TSK interval type-2 fuzzy neural networks control with online structure and parameter learning for mobile robot trajectory tracking

被引:19
|
作者
Bencherif, Aissa [1 ]
Chouireb, Fatima [1 ]
机构
[1] Univ Amar Telidji, Dept Elect, BP 37G, Laghouat, Algeria
关键词
Mobile robot; Trajectory tracking; Structure and parameter learning; Varied learning rates VLR; Recurrent type-2 fuzzy neural network; RTSKIT2FNN;
D O I
10.1007/s10489-019-01439-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper focuses on the design of a recurrent Takagi-Sugeno-Kang interval type-2 fuzzy neural network RTSKIT2FNN for mobile robot trajectory tracking problem. The RTSKIT2FNN is incorporating the recurrent frame of internal-feedback loops into interval type-2 fuzzy neural network which uses simple interval type-2 fuzzy sets in the antecedent part and the Takagi-Sugeno-Kang (TSK) type in the consequent part of the fuzzy rule. The antecedent part forms a local internal feedback loop by feeding the membership function of each node in the fuzzification layer to itself. Initially, the rule base in the RTSKIT2FNN is empty, after that, all rules are generated by online structure learning, and all the parameters of the RTSKIT2FNN are updated online using gradient descent algorithm with varied learning rates VLR. Through experimental results, we demonstrate the effectiveness of the proposed RTSKIT2FNN for mobile robot control.
引用
收藏
页码:3881 / 3893
页数:13
相关论文
共 50 条
  • [1] A recurrent TSK interval type-2 fuzzy neural networks control with online structure and parameter learning for mobile robot trajectory tracking
    Aissa Bencherif
    Fatima Chouireb
    Applied Intelligence, 2019, 49 : 3881 - 3893
  • [2] Trajectory and Speed Control of Tracked Mobile Robot with Interval Type-2 TSK Fuzzy Logic Controller
    Dogmus, Osman
    Gunes, Mahit
    STUDIES IN INFORMATICS AND CONTROL, 2024, 33 (02): : 39 - 50
  • [3] Interval type-2 TSK fuzzy approach for autonomous mobile robot control in presence of uncertainties
    Ayedi, Dorra
    Boujelben, Maissa
    Rekik, Chokri
    2017 14TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2017, : 280 - 286
  • [4] A Self-Evolving Interval Type-2 Fuzzy Neural Network With Online Structure and Parameter Learning
    Juang, Chia-Feng
    Tsao, Yu-Wei
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2008, 16 (06) : 1411 - 1424
  • [5] Supervisory adaptive tracking control of robot manipulators using interval type-2 TSK fuzzy logic system
    Chen, C. -S.
    IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (15): : 1796 - 1807
  • [6] Online learning of an interval type-2 TSK fuzzy logic controller for nonlinear systems
    Khater, A. Aziz
    El-Nagar, Ahmad M.
    El-Bardini, Mohammad
    El-Rabaie, Nabila M.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (16): : 9254 - 9285
  • [7] TSK Interval Type-2 Fuzzy Neural Networks for Chaotic Time Series Prediction
    Zhao, Liang
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3325 - 3330
  • [8] Self-learning interval type-2 fuzzy neural network controllers for trajectory control of a Delta parallel robot
    Lu, Xingguo
    Zhao, Yue
    Liu, Ming
    NEUROCOMPUTING, 2018, 283 : 107 - 119
  • [9] A Novel Structure of Actor-Critic Learning Based on an Interval Type-2 TSK Fuzzy Neural Network
    Khater, A. Aziz
    El-Nagar, Ahmad M.
    El-Bardini, Mohammad
    El-Rabaie, Nabila
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (11) : 3047 - 3061
  • [10] Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network - A novel structure
    El-Nagar, Ahmad M.
    ISA TRANSACTIONS, 2018, 72 : 205 - 217