Implementation of real-time moving horizon estimation for robust air data sensor fault diagnosis in the RECONFIGURE benchmark

被引:5
|
作者
Wan, Yiming [1 ]
Keviczky, Tamas [1 ]
机构
[1] Delft Univ Technol, NL-2628 CD Delft, Netherlands
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 17期
关键词
Fault detection and isolation; moving horizon estimation; real-time computation; STATE;
D O I
10.1016/j.ifacol.2016.09.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents robust fault diagnosis and estimation for the calibrated airspeed and angle-of-attack sensor faults in the RECONFIGURE benchmark. We adopt a low-order longitudinal model augmented with wind dynamics. In order to enhance sensitivity to faults in the presence of winds, we propose a constrained residual generator by formulating a constrained moving horizon estimation problem and exploiting the bounds of winds. The moving horizon estimation problem requires solving a nonlinear program in real time, which is challenging for flight control computers. This challenge is addressed by adopting an efficient structure-exploiting algorithm within a real-time iteration scheme. Specific approximations and simplifications are performed to enable the implementation of the algorithm using the Airbus graphical symbol library for industrial validation and verification. The simulation tests on the RECONFIGURE benchmark over different flight points and maneuvers show the efficacy of the proposed approach. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:64 / 69
页数:6
相关论文
共 50 条
  • [1] Real-Time Fault-Tolerant Moving Horizon Air Data Estimation for the RECONFIGURE Benchmark
    Wan, Yiming
    Keviczky, Tamas
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (03) : 997 - 1011
  • [2] Robust Air Data Sensor Fault Diagnosis With Enhanced Fault Sensitivity Using Moving Horizon Estimation
    Wan, Yiming
    Keviczky, Tamas
    Verhaegen, Michel
    [J]. 2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 5969 - 5975
  • [3] Real-time nonlinear moving horizon observer with pre-estimation for aircraft sensor fault detection and estimation
    Wan, Yiming
    Keviczky, Tamas
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (16) : 5394 - 5411
  • [4] Real-time preventive sensor maintenance using robust moving horizon estimation and economic model predictive control
    Lao, Liangfeng
    Ellis, Matthew
    Durand, Helen
    Christofides, Panagiotis D.
    [J]. AICHE JOURNAL, 2015, 61 (10) : 3374 - 3389
  • [5] Real-Time Moving Horizon Estimation of Air Data Parameters and Wind Velocities for fixed-wing UAVs
    Wenz, Andreas
    Johansen, Tor Arne
    [J]. 2020 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS'20), 2020, : 998 - 1006
  • [6] Real-time optimal attitude estimation using horizon sensor and magnetometer data
    Hill, SM
    McCusker, TJ
    [J]. JOURNAL OF SPACECRAFT AND ROCKETS, 1998, 35 (06) : 778 - 784
  • [7] Real-time moving horizon estimation for a vibrating active cantilever
    Abdollahpouri, Mohammad
    Takacs, Gergely
    Rohal'-Ilkiv, Boris
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 86 : 1 - 15
  • [8] A real-time algorithm for moving horizon state and parameter estimation
    Kuehl, Peter
    Diehl, Moritz
    Kraus, Tom
    Schloeder, Johannes P.
    Bock, Hans Georg
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2011, 35 (01) : 71 - 83
  • [9] Real-time Pedestrian Localization and State Estimation Using Moving Horizon Estimation
    Mohammadbagher, Ehsan
    Bhatt, Neel P.
    Hashemi, Ehsan
    Fidan, Baris
    Khajepour, Amir
    [J]. 2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [10] Real-time implementation of fault diagnosis to a heat exchanger
    Persin, S
    Tovornik, B
    [J]. CONTROL ENGINEERING PRACTICE, 2005, 13 (08) : 1061 - 1069