Nanoscale, Electrified Liquid Jets for High-Resolution Printing of Charge

被引:111
|
作者
Park, Jang-Ung [3 ,4 ]
Lee, Sangkyu [1 ,3 ,4 ]
Unarunotai, Sakulsuk [3 ,4 ]
Sun, Yugang [2 ]
Dunham, Simon [3 ,4 ]
Song, Taeseup [1 ]
Ferreira, Placid M. [3 ,4 ]
Alleyne, Andrew G. [3 ,4 ]
Paik, Ungyu [1 ]
Rogers, John A. [3 ,4 ]
机构
[1] Hanyang Univ, Dept Energy Engn, Div Mat Sci Engn, Seoul 133791, South Korea
[2] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[3] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
[4] Univ Illinois, Beckman Inst, Dept Mech Sci & Engn, Dept Mat Sci & Engn,Dept Chem, Urbana, IL 61801 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
Electrohydrodynamics; jet printing; charge printing; electrostatic doping; semiconductor nanomaterials; NANOPARTICLES; ELECTRETS; PATTERNS; ELECTROSPRAY; TRANSISTORS; MECHANISM; CONTACT;
D O I
10.1021/nl903495f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nearly all research in micro- and nanofabrication focuses on the formation of solid structures of materials that perform some mechanical, electrical, optical, or related function. Fabricating patterns of charges, by contrast, is a much less well explored area that is of separate and growing interesting because the associated electric fields can be exploited to control the behavior of nanoscale electronic and mechanical devices, guide the assembly of nanomaterials, or modulate the properties of biological systems. This paper describes a versatile technique that uses fine, electrified liquid jets formed by electrohydrodynamics at micro- and nanoscale nozzles to print complex patterns of both positive and negative charges, with resolution that can extend into the submicrometer and nanometer regime. The reported results establish the basic aspects of this process and demonstrate the capabilities through printed patterns with diverse geometries and charge configurations in a variety of liquid inks, including suspensions of nanoparticles and nanowires. The use of printed charge to control the properties of silicon nanomembrane transistors provides an application example.
引用
收藏
页码:584 / 591
页数:8
相关论文
共 50 条
  • [1] Impulsively actuated jets from thin liquid films for high-resolution printing applications
    Brown, Matthew S.
    Brasz, C. Frederik
    Ventikos, Yiannis
    Arnold, Craig B.
    JOURNAL OF FLUID MECHANICS, 2012, 709 : 341 - 370
  • [2] Impulsively Induced Jets from Viscoelastic Films for High-Resolution Printing
    Turkoz, Emre
    Perazzo, Antonio
    Kim, Hyoungsoo
    Stone, Howard A.
    Arnold, Craig B.
    PHYSICAL REVIEW LETTERS, 2018, 120 (07)
  • [3] THE SIMULATION OF ELECTRIFIED LIQUID JETS
    KAISER, KL
    KAISER, MJ
    WEEKS, WL
    MATHEMATICAL AND COMPUTER MODELLING, 1993, 18 (12) : 57 - 83
  • [4] High-resolution light field prints by nanoscale 3D printing
    John You En Chan
    Qifeng Ruan
    Menghua Jiang
    Hongtao Wang
    Hao Wang
    Wang Zhang
    Cheng-Wei Qiu
    Joel K. W. Yang
    Nature Communications, 12
  • [5] High-resolution light field prints by nanoscale 3D printing
    Chan, John You En
    Ruan, Qifeng
    Jiang, Menghua
    Wang, Hongtao
    Wang, Hao
    Zhang, Wang
    Qiu, Cheng-Wei
    Yang, Joel K. W.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [6] Whipping of electrified liquid jets
    Guerrero, Josefa
    Rivero, Javier
    Gundabala, Venkata R.
    Perez-Saborid, Miguel
    Fernandez-Nieves, Alberto
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (38) : 13763 - 13767
  • [7] ON SPRAYING OF ELECTRIFIED LIQUID JETS
    GERTSENSHTEIN, SY
    LYAKHOV, AG
    DOKLADY AKADEMII NAUK, 1995, 343 (03) : 329 - 331
  • [8] HIGH-RESOLUTION RECORDER FOR MAGNETIC PRINTING
    DREWS, RE
    FAUCZ, EC
    FREY, TM
    KOVNAT, LA
    NESTA, C
    IEEE TRANSACTIONS ON MAGNETICS, 1981, 17 (06) : 2529 - 2531
  • [9] HIGH-RESOLUTION LITHOGRAPHY WITH PROJECTION PRINTING
    MORITZ, H
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1979, 26 (04) : 705 - 710
  • [10] Investigation of high-resolution contact printing
    Meliorisz, B.
    Partel, S.
    Schnattinger, T.
    Fuehner, T.
    Erdmann, A.
    Hudek, P.
    MICROELECTRONIC ENGINEERING, 2008, 85 (5-6) : 744 - 748