On two-bridge knots and a conjecture of Hirasawa-Murasugi

被引:4
|
作者
Chen, Wenzhao [1 ]
机构
[1] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
关键词
Two-bridge knots; Alexander polynomial; signature invariant; Hirasawa-Murasugi conjecture;
D O I
10.1142/S0218216521500073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fox conjectured the Alexander polynomial of an alternating knot is trapezoidal, i.e. the absolute values of the coefficients first increase, then stabilize and finally decrease in a symmetric way. Recently, Hirasawa and Murasugi further conjectured a relation between the number of the stable coefficients in the Alexander polynomial and the signature invariant. In this paper we prove the Hirasawa-Murasugi conjecture for two-bridge knots.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Simon's conjecture for two-bridge knots
    Boileau, Michel
    Boyer, Steve
    Reid, Alan W.
    Wang, Shicheng
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2010, 18 (01) : 121 - 143
  • [2] On minimality of two-bridge knots
    Nagasato, Fumikazu
    Suzuki, Masaaki
    Tran, Anh T.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (03)
  • [3] On two-bridge ribbon knots
    Horigome, Sayo
    Ichihara, Kazuhiro
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2024, 33 (05)
  • [4] Alexander polynomials of two-bridge knots
    Nakanishi, Y
    Suketa, M
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 60 : 334 - 342
  • [5] On the lexicographic degree of two-bridge knots
    Brugalle, Erwan
    Koseleff, Pierre-Vincent
    Pecker, Daniel
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2016, 25 (07)
  • [6] Two-bridge knots with property Q
    González-Acuña, F
    Ramírez, A
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2001, 52 : 447 - 454
  • [7] Chebyshev diagrams for two-bridge knots
    P. -V. Koseleff
    D. Pecker
    [J]. Geometriae Dedicata, 2011, 150 : 405 - 425
  • [8] BITWIST MANIFOLDS AND TWO-BRIDGE KNOTS
    Cannon, James W.
    Floyd, William J.
    Lambert, Leer
    Parry, Walter R.
    Purcell, Jessica S.
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2016, 284 (01) : 1 - 39
  • [9] A characterization of quasipositive two-bridge knots
    Ozbagci, Burak
    Orevkov, Stepan
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (05)
  • [10] Chebyshev diagrams for two-bridge knots
    Koseleff, P. -V.
    Pecker, D.
    [J]. GEOMETRIAE DEDICATA, 2011, 150 (01) : 405 - 425