Lie symmetries of nonlinear two-dimensional reaction-diffusion systems

被引:12
|
作者
Cherniha, R [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev 4, Ukraine
关键词
D O I
10.1016/S0034-4877(01)80009-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A complete description of Lie symmetries is obtained for two-dimensional nonlinear systems of two reaction-diffusion equations. Lie ansatze and exact solutions of a nonlinear reaction-diffusion system arising in mathematical biology are presented.
引用
收藏
页码:63 / 76
页数:14
相关论文
共 50 条
  • [1] Lie symmetries of nonlinear reaction-diffusion systems with variable diffusivities
    Cherniha, R
    King, JR
    [J]. GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 717 - 720
  • [2] Lie symmetries of nonlinear multidimensional reaction-diffusion systems: II
    Cherniha, R
    King, JR
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (02): : 405 - 425
  • [3] Lie symmetries of nonlinear multidimensional reaction-diffusion systems: I
    Cherniha, R
    King, JR
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (02): : 267 - 282
  • [4] Modulated two-dimensional patterns in reaction-diffusion systems
    Kuske, R
    Milewski, P
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1999, 10 : 157 - 184
  • [5] Invariant sets and solutions to the two-dimensional nonlinear reaction-diffusion equations
    Zhu, Chunrong
    Qu, Changzheng
    Zhang, Shunli
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E1139 - E1152
  • [6] Lie symmetries of nonlinear multidimensional reaction-diffusion systems: I (vol 33, pg 7839, 2000)
    Cherniha, R
    King, JR
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (43): : 7839 - 7841
  • [7] TWO-DIMENSIONAL REACTION-DIFFUSION EQUATIONS WITH MEMORY
    Conti, Monica
    Gatti, Stefania
    Grasselli, Maurizio
    Pata, Vittorino
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2010, 68 (04) : 607 - 643
  • [8] Two-dimensional patterns in reaction-diffusion systems: an analytical tool for the experimentalist
    Giovambattista, N
    Bellini, M
    Deza, R
    [J]. INVERSE PROBLEMS, 2000, 16 (03) : 811 - 819
  • [9] Target patterns in two-dimensional heterogeneous oscillatory reaction-diffusion systems
    Stich, M
    Mikhailov, AS
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 215 (01) : 38 - 45
  • [10] Lie symmetries and multiple solutions in lambda-omega reaction-diffusion systems
    Archilla, JFR
    Romero, JL
    Romero, FR
    Palmero, F
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (01): : 185 - 194