Big Data Analysis and Machine Learning in Intensive Care Units

被引:21
|
作者
Nunez Reiz, A. [1 ]
Armengol de la Hoz, M. A. [2 ,3 ,4 ]
Sanchez Garcia, M. [1 ]
机构
[1] Hosp Univ Clin San Carlos, Serv Med Intens, Madrid, Spain
[2] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Dept Anesthesia Crit Care & Pain Med, Boston, MA USA
[3] MIT, Inst Med Engn & Sci, Lab Computat Physiol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Univ Politecn Madrid, ETSI Telecomunicac, Biomed Technol Ctr CTB, Biomed Engn & Telemed Grp, Madrid, Spain
关键词
Big Data Analysis; Machine Learning; Artificial intelligence; Secondary electronic health record data analysis;
D O I
10.1016/j.medin.2018.10.007
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Intensive care is an ideal environment for the use of Big Data Analysis (BDA) and Machine Learning (ML), due to the huge amount of information processed and stored in electronic format in relation to such care. These tools can improve our clinical research capabilities and clinical decision making in the future. The present study reviews the foundations of BDA and ML, and explores possible applications in our field from a clinical viewpoint. We also suggest potential strategies to optimize these new technologies and describe a new kind of hybrid healthcare-data science professional witha linking role between clinicians and data. (C) 2018 Elsevier Espana, S.L.U. y SEMICYUC. All rights reserved.
引用
收藏
页码:416 / 426
页数:11
相关论文
共 50 条
  • [1] Big Data Analysis and Machine Learning in Intensive Care Medicine: Identifying new ethical and legal challenges
    Lazcoz Moratinos, G.
    de Miguel Beriain, I.
    [J]. MEDICINA INTENSIVA, 2020, 44 (05) : 319 - 320
  • [2] Big Data in Healthcare: Intensive Care Units as a Case Study
    Constantinou, Ioannis
    Papadopoulos, Andreas
    Dikaiakos, Marios D.
    Stylianides, Nicolas
    Kyprianou, Theodoros
    [J]. ERCIM NEWS, 2014, (97): : 48 - 49
  • [3] In reply to "Big Data Analysis and Machine Learning in Intensive Care Medicine: Identifying new ethical and legal challenges"
    Nunez Reiz, A.
    Sanchez Garcia, M.
    [J]. MEDICINA INTENSIVA, 2020, 44 (05) : 320 - 320
  • [4] Machine learning in 'big data': handle with care
    Loring, Zak
    Mehrotra, Suchit
    Piccini, Jonathan P.
    [J]. EUROPACE, 2019, 21 (09): : 1284 - 1285
  • [5] Big Data and Machine Learning in Health Care
    Beam, Andrew L.
    Kohane, Isaac S.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2018, 319 (13): : 1317 - 1318
  • [6] Machine Learning Model for the Prediction of Hemorrhage in Intensive Care Units
    Kang, Sora
    Park, Chul
    Lee, Jinseok
    Yoon, Dukyong
    [J]. HEALTHCARE INFORMATICS RESEARCH, 2022, 28 (04) : 364 - 375
  • [7] Machine Learning and Big Data Implementation on Health Care data
    Sasubilli, Gopinadh
    Kumar, Abhishek
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 859 - 864
  • [8] Prediction of Healthcare Associated Infections in an Intensive Care Unit Using Machine Learning and Big Data Tools
    Revuelta-Zamorano, Paz
    Sanchez, Alberto
    Luis Rojo-Alvarez, Jose
    Alvarez-Rodriguez, Joaquin
    Ramos-Lopez, Javier
    Soguero-Ruiz, Cristina
    [J]. XIV MEDITERRANEAN CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING 2016, 2016, 57 : 834 - 839
  • [9] Big Data Analytics in Intensive Care Units: challenges and applicability in an Argentinian Hospital
    Balladini, Javier
    Rozas, Claudia
    Frati, Emmanuel
    Vicente, Nestor
    Orlandi, Cristina
    [J]. JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2015, 15 (02): : 61 - 67
  • [10] A REVIEW ON THE SIGNIFICANCE OF MACHINE LEARNING FOR DATA ANALYSIS IN BIG DATA
    Kolisetty, Vishnu Vandana
    Rajput, Dharmendra Singh
    [J]. JORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY, 2020, 6 (01): : 41 - 57