Rogue-wave interaction for a higher-order nonlinear Schrodinger-Maxwell-Bloch system in the optical-fiber communication

被引:26
|
作者
Zuo, Da-Wei [1 ,2 ,3 ]
Gao, Yi-Tian [1 ,2 ]
Feng, Yu-Jie [1 ,2 ]
Xue, Long [1 ,2 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Fluid Mech, Beijing 100191, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100191, Peoples R China
[3] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Peoples R China
基金
中国国家自然科学基金;
关键词
Optical fiber; Higher-order nonlinear; Schrodinger-Maxwell-Bloch system; Rogue-wave solution; Darboux transformation; SYMBOLIC-COMPUTATION; EQUATIONS; SOLITONS; DYNAMICS;
D O I
10.1007/s11071-014-1557-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a higher-order nonlinear Schrodinger-Maxwell-Bloch system in the optical-fiber communication is investigated. By virtue of the generalized Darboux transformation, higher-order rogue-wave solutions are derived. Wave propagation and interaction are analyzed: (1) The frequency affects the number of troughs, type and propagation direction of rogue waves for the polarization of the resonant medium and extant population inversion, while the frequency has no influence on the module for the complex envelope of the field. (2) The frequency affects the type of the higher-order rogue-wave interaction. Second- and third-order rogue-wave head-on interactions are presented, with the propagation direction of each rogue wave unvaried after the interaction.
引用
收藏
页码:2309 / 2318
页数:10
相关论文
共 50 条
  • [1] Rogue-wave interaction for a higher-order nonlinear Schrödinger–Maxwell–Bloch system in the optical-fiber communication
    Da-Wei Zuo
    Yi-Tian Gao
    Yu-Jie Feng
    Long Xue
    Nonlinear Dynamics, 2014, 78 : 2309 - 2318
  • [2] Rogue waves for the generalized nonlinear Schrodinger-Maxwell-Bloch system in optical-fiber communication
    Zuo, Da-Wei
    Gao, Yi-Tian
    Xue, Long
    Feng, Yu-Jie
    Sun, Yu-Hao
    APPLIED MATHEMATICS LETTERS, 2015, 40 : 78 - 83
  • [3] Rogue waves on the periodic background for a higher-order nonlinear Schrodinger-Maxwell-Bloch system
    Chang, Jian
    Zhaqilao
    WAVE MOTION, 2024, 131
  • [4] Solitons and Rogue Waves for a Higher-Order Nonlinear Schrodinger-Maxwell-Bloch System in an Erbium-Doped Fiber
    Su, Chuan-Qi
    Gao, Yi-Tian
    Xue, Long
    Yu, Xin
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2015, 70 (11): : 935 - 948
  • [5] Solitons, breathers and rogue waves for a higher-order nonlinear Schrodinger-Maxwell-Bloch system in an erbium-doped fiber system
    Wang, Qi-Min
    Gao, Yi-Tian
    Su, Chuan-Qi
    Zuo, Da-Wei
    PHYSICA SCRIPTA, 2015, 90 (10)
  • [6] Soliton collisions for a higher-order nonlinear Schrodinger-Maxwell-Bloch system in an erbium-doped fiber
    Xie, Xi-Yang
    Tian, Bo
    Wu, Xiao-Yu
    Chai, Han-Peng
    Jiang, Yan
    CHINESE JOURNAL OF PHYSICS, 2017, 55 (04) : 1369 - 1376
  • [7] Nonlinear localized wave conversions for a higher-order nonlinear Schrodinger-Maxwell-Bloch system with quintic terms in an erbium-doped fiber
    Sun, Wen-Rong
    NONLINEAR DYNAMICS, 2017, 89 (01) : 383 - 390
  • [8] Rogue-wave solutions of a higher-order nonlinear Schrodinger equation for inhomogeneous Heisenberg ferromagnetic system
    Jia, H. X.
    Ma, J. Y.
    Liu, Y. J.
    Liu, X. F.
    INDIAN JOURNAL OF PHYSICS, 2015, 89 (03) : 281 - 287
  • [9] Rogue wave solutions for a higher-order nonlinear Schrodinger equation in an optical fiber
    Lan, Zhong-Zhou
    APPLIED MATHEMATICS LETTERS, 2020, 107
  • [10] Inverse Scattering Transform and Soliton Classification of Higher-Order Nonlinear Schrodinger-Maxwell-Bloch Equations
    Li, Zhi-Qiang
    Tian, Shou-Fu
    Peng, Wei-Qi
    Yang, Jin-Jie
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 203 (03) : 709 - 725