A Machine Learning Method to Identify Genetic Variants Potentially Associated With Alzheimer's Disease

被引:11
|
作者
Monk, Bradley [1 ,2 ]
Rajkovic, Andrei [3 ]
Petrus, Semar [4 ]
Rajkovic, Aleks [5 ]
Gaasterland, Terry [4 ]
Malinow, Roberto [1 ,6 ]
机构
[1] Univ Calif San Diego, Sch Med, Ctr Neural Circuits & Behav, Dept Neurosci, San Diego, CA 92103 USA
[2] Univ Calif San Diego, Cognit Sci & Psychol IDP, San Diego, CA 92103 USA
[3] Royal Holloway Univ London, Dept Comp Sci, Egham, Surrey, England
[4] Univ Calif San Diego, Scripps Inst Oceanog, Inst Genom Med, San Diego, CA 92103 USA
[5] Univ Calif San Francisco, Dept Pathol, Dept Obstet Gynecol & Reprod Sci, San Francisco, CA 94140 USA
[6] Univ Calif San Diego, Div Biol Sci, Sect Neurobiol, San Diego, CA 92103 USA
基金
奥地利科学基金会; 美国国家卫生研究院; 俄罗斯基础研究基金会;
关键词
machine learning; neural network; Alzheimer's; disease; polygenic; GENOME-WIDE ASSOCIATION; RISK SCORES; A-BETA; ONSET; PREDICTION; ALLELE; APOE; TAU; CLU;
D O I
10.3389/fgene.2021.647436
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
There is hope that genomic information will assist prediction, treatment, and understanding of Alzheimer's disease (AD). Here, using exome data from similar to 10,000 individuals, we explore machine learning neural network (NN) methods to estimate the impact of SNPs (i.e., genetic variants) on AD risk. We develop an NN-based method (netSNP) that identifies hundreds of novel potentially protective or at-risk AD-associated SNPs (along with an effect measure); the majority with frequency under 0.01. For case individuals, the number of "protective" (or "at-risk") netSNP-identified SNPs in their genome correlates positively (or inversely) with their age of AD diagnosis and inversely (or positively) with autopsy neuropathology. The effect measure increases correlations. Simulations suggest our results are not due to genetic linkage, overfitting, or bias introduced by netSNP. These findings suggest that netSNP can identify SNPs associated with AD pathophysiology that may assist with the diagnosis and mechanistic understanding of the disease.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] VEPAD - Predicting the effect of variants associated with Alzheimer's disease using machine learning
    Rangaswamy, Uday
    Dharshini, S. Akila Parvathy
    Yesudhas, Dhanusha
    Gromiha, M. Michael
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 124
  • [2] Common and Rare Genetic Variants Associated With Alzheimer's Disease
    Marei, Hany E.
    Althani, Asmaa
    Suhonen, Jaana
    El Zowalaty, Mohamed E.
    Albanna, Mohammad A.
    Cenciarelli, Carlo
    Wang, Tengfei
    Caceci, Thomas
    JOURNAL OF CELLULAR PHYSIOLOGY, 2016, 231 (07) : 1432 - 1437
  • [3] Exploration of Imaging Genetic Biomarkers of Alzheimer's Disease Based on a Machine Learning Method
    Wang, Yuanfei
    Wang, Xitao
    JOURNAL OF INTEGRATIVE NEUROSCIENCE, 2024, 23 (04)
  • [4] The Effect of Alzheimer's Disease-Associated Genetic Variants on Longevity
    Tesi, Niccolo
    Hulsman, Marc
    van der Lee, Sven J.
    Jansen, Iris E.
    Stringa, Najada
    van Schoor, Natasja M.
    Scheltens, Philip
    van der Flier, Wiesje M.
    Huisman, Martijn
    Reinders, Marcel J. T.
    Holstege, Henne
    FRONTIERS IN GENETICS, 2021, 12
  • [5] Genetic variants and functional pathways associated with resilience to Alzheimer's disease
    Dumitrescu, Logan
    Mahoney, Emily R.
    Mukherjee, Shubhabrata
    Lee, Michael L.
    Bush, William S.
    Engelman, Corinne D.
    Lu, Qiongshi
    Fardo, David W.
    Trittschuh, Emily H.
    Mez, Jesse
    Kaczorowski, Catherine
    Hernandez Saucedo, Hector
    Widaman, Keith F.
    Buckley, Rachel
    Properzi, Michael
    Mormino, Elizabeth
    Yang, Hyun-Sik
    Harrison, Tessa
    Hedden, Trey
    Nho, Kwangsik
    Andrews, Shea J.
    Tommet, Doug
    Hadad, Niran
    Sanders, R. Elizabeth
    Ruderfer, Douglas M.
    Gifford, Katherine A.
    Moore, Annah M.
    Cambronero, Francis
    Zhong, Xiaoyuan
    Raghavan, Neha S.
    Vardarajan, Badri
    Pericak-Vance, Margaret A.
    Farrer, Lindsay A.
    Wang, Li-San
    Cruchaga, Carlos
    Schellenberg, Gerard
    Cox, Nancy J.
    Haines, Jonathan L.
    Keene, C. Dirk
    Saykin, Andrew J.
    Larson, Eric B.
    Sperling, Reisa A.
    Mayeux, Richard
    Bennett, David A.
    Schneider, Julie A.
    Crane, Paul K.
    Jefferson, Angela L.
    Hohman, Timothy J.
    BRAIN, 2020, 143 (08) : 2561 - 2575
  • [6] Genetic variants and functional pathways associated with resilience to Alzheimer's disease
    Dumitrescu, Logan
    Mahoney, Emily R.
    Mukherjee, Shubhabrata
    Lee, Michael L.
    Bush, William S.
    Engelman, Corinne D.
    Lu, Qiongshi
    Fardo, David W.
    Trittschuh, Emily H.
    Mez, Jesse
    Kaczorowski, Catherine
    Saucedo, Hector Hernandez
    Widaman, Keith F.
    Buckley, Rachel
    Properzi, Michael
    Mormino, Elizabeth
    Yang, Hyun-Sik
    Harrison, Tessa
    Hedden, Trey
    Nho, Kwangsik
    Andrews, Shea J.
    Tommet, Doug
    Hadad, Niran
    Sanders, R. Elizabeth
    Ruderfer, Douglas M.
    Gifford, Katherine A.
    Moore, Annah M.
    Cambronero, Francis
    Zhong, Xiaoyuan
    Raghavan, Neha S.
    Vardarajan, Badri
    Pericak-Vance, Margaret A.
    Farrer, Lindsay A.
    Wang, Li-San
    Cruchaga, Carlos
    Schellenberg, Gerard
    Cox, Nancy J.
    Haines, Jonathan L.
    Keene, C. Dirk
    Saykin, Andrew J.
    Larson, Eric B.
    Sperling, Reisa A.
    Mayeux, Richard
    Bennett, David A.
    Schneider, Julie A.
    Crane, Paul K.
    Jefferson, Angela L.
    Hohman, Timothy J.
    BRAIN, 2020, 143 : 2561 - 2575
  • [7] Multimodal Machine Learning to Identify Risk of Progression in Asymptomatic Alzheimer's Disease
    Tandon, Raghav
    Watson, Caroline M.
    Seyfried, Nicholas T.
    Lah, James J.
    Mitchell, Cassie S.
    ANNALS OF NEUROLOGY, 2022, 92 : S56 - S56
  • [8] A new machine learning method for identifying Alzheimer's disease
    Liu, Lin
    Zhao, Shenghui
    Chen, Haibao
    Wang, Aiguo
    SIMULATION MODELLING PRACTICE AND THEORY, 2020, 99
  • [9] Stable Variable Selection Method with Shrinkage Regression Applied to the Selection of Genetic Variants Associated with Alzheimer's Disease
    Afreixo, Vera
    Tavares, Ana Helena
    Enes, Vera
    Pinheiro, Miguel
    Rodrigues, Leonor
    Moura, Gabriela
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [10] Investigation of genetic variants associated with Alzheimer disease and vascular dementia in Parkinson's disease cognition
    Barrett, M. J.
    Koeppel, A. F.
    Turner, S. D.
    Worrall, B. B.
    MOVEMENT DISORDERS, 2014, 29 : S337 - S337