Fast facile synthesis of SnO2/Graphene composite assisted by microwave as anode material for lithium-ion batteries

被引:52
|
作者
Shi, Shaojun [1 ]
Deng, Tingting [1 ]
Zhang, Ming [1 ]
Yang, Gang [1 ]
机构
[1] Changshu Inst Technol, Jiangsu Lab Adv Funct Mat, Changshu 215500, Jiangsu, Peoples R China
关键词
Tin oxide; Graphene; Facile microwave hydrothermal method; Anode; Lithium ion battery; NITROGEN-DOPED GRAPHENE; OXIDE COMPOSITES; ENERGY-STORAGE; HIGH-CAPACITY; CATHODE MATERIAL; MESOPOROUS SNO2; ELECTRODE; FABRICATION; SHELL; LITHIATION;
D O I
10.1016/j.electacta.2017.06.111
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
SnO2 is promising as anode material for Lithium ion batteries(LIBs) due to its high specific capacity and low opening potential. However, its poor electronic conductivity as well as serious volume effect significantly restrict its application in LIBs. In this work, a facile hydrothermal method assisted with microwave is performed to realize the composite of SnO2 and graphene within only 30 minutes without any chelating agents. It is highly time-efficient with relatively high SnO2 loading of 89.97 wt.%. Ultrasmall nano-particles of SnO2 well disperse on the surface of the graphene with average particle size of 3-8 nm and larger surface area of 417.45 m(2) g(-1). Simultaneously, high charge/discharge capacity of 969.4/978.6 mAh g(-1) is obtained after 100 cycles at 200 mA g(-1). Even increasing the current density to 1 A g(-1), high reversible charge/discharge capacities of 740.0/747.0 mAh g(-1) are still remained after 200 cycles. In addition, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are performed to further study the composite material prepared by facile microwave hydrothermal method. It is considered to be a high efficient way to obtain SnO2/graphene composite with excellent electrochemical properties as anode material for applications. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1104 / 1111
页数:8
相关论文
共 50 条
  • [1] Synthesis of SnO2/graphene composite anode materials for lithium-ion batteries
    Tan, Qingke
    Kong, Zhen
    Chen, Xiaojing
    Zhang, Lei
    Hu, Xiaoqi
    Mu, Mengxin
    Sun, Haochen
    Shao, Xinchun
    Guan, Xianggang
    Gao, Min
    Xu, Binghui
    [J]. APPLIED SURFACE SCIENCE, 2019, 485 : 314 - 322
  • [2] Facile, low temperature synthesis of SnO2/reduced graphene oxide nanocomposite as anode material for lithium-ion batteries
    Hou, Chau-Chung
    Brahma, Sanjaya
    Weng, Shao-Chieh
    Chang, Chia-Chin
    Huang, Jow-Lay
    [J]. APPLIED SURFACE SCIENCE, 2017, 413 : 160 - 168
  • [3] A facile method for in-situ synthesis of SnO2/graphene as a high performance anode material for lithium-ion batteries
    Wu, Guiliang
    Wu, Mingbo
    Wang, Ding
    Yin, Linghong
    Ye, Jiashun
    Deng, Shenzhen
    Zhu, Zhiyuan
    Ye, Wenjun
    Li, Zhongtao
    [J]. APPLIED SURFACE SCIENCE, 2014, 315 : 400 - 406
  • [4] Design and synthesis of graphene/SnO2/polyacrylamide nanocomposites as anode material for lithium-ion batteries
    Wan, Yuanxin
    Wang, Tianyi
    Lu, Hongyan
    Xu, Xiaoqian
    Zuo, Chen
    Wang, Yong
    Teng, Chao
    [J]. RSC ADVANCES, 2018, 8 (21): : 11744 - 11748
  • [5] In situ synthesis of SnO2 nanosheet/graphene composite as anode materials for lithium-ion batteries
    Hongdong Liu
    Jiamu Huang
    Chengjie Xiang
    Jia Liu
    Xinlu Li
    [J]. Journal of Materials Science: Materials in Electronics, 2013, 24 : 3640 - 3645
  • [6] In situ synthesis of SnO2 nanosheet/graphene composite as anode materials for lithium-ion batteries
    Liu, Hongdong
    Huang, Jiamu
    Xiang, Chengjie
    Liu, Jia
    Li, Xinlu
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2013, 24 (10) : 3640 - 3645
  • [8] Facile synthesis of iron-doped SnO2/reduced graphene oxide composite as high-performance anode material for lithium-ion batteries
    Wang, Junjie
    Wang, Luyang
    Zhang, Siyu
    Liang, Shuiying
    Liang, Xianqing
    Huang, Haifu
    Zhou, Wenzheng
    Guo, Jin
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 748 : 1013 - 1021
  • [9] Facile synthesis of SnO2 nanocrystals anchored onto graphene nanosheets as anode materials for lithium-ion batteries
    Zhang, Yanjun
    Jiang, Li
    Wang, Chunru
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (31) : 20061 - 20065
  • [10] Synthesis and Electrochemical Performance of SnO2/Graphene Anode Material for Lithium Ion Batteries
    Yu Zhen-Jun
    Wang Yan-Li
    Deng Hong-Gui
    Zhan Liang
    Yang Guang-Zhi
    Yang Jun-He
    Ling Li-Cheng
    [J]. JOURNAL OF INORGANIC MATERIALS, 2013, 28 (05) : 515 - 520