Nanostructured target fabrication with metal and semiconductor nanoparticles

被引:2
|
作者
Barberio, M. [1 ,2 ,3 ]
Antici, P. [2 ,3 ,4 ,5 ]
机构
[1] Univ Calabria, DiBEST Dept, I-87030 Commenda Di Rende, Italy
[2] Ist Nazl Fis Nucl, Rome, Italy
[3] ELI ALPS, Szeged, Hungary
[4] INRS EMT, Varennes, PQ, Canada
[5] Univ Rome, Dip SBAI, Rome, Italy
来源
MATERIALS RESEARCH EXPRESS | 2015年 / 2卷 / 10期
基金
加拿大自然科学与工程研究理事会;
关键词
laser-driven acceleration; nanostructured target; semiconductive target; INTENSE;
D O I
10.1088/2053-1591/2/10/105005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The development of ultra-intense high-energy (>> 1 J) short (< 1 ps) laser pulses in the last decade has enabled the acceleration of high-energy short-pulse proton beams. A key parameter for enhancing the acceleration regime is the laser-to-target absorption, which heavily depends on the target structure and material. In this work, we present the realization of a nanostructured target with a sub-laser wavelength nano-layer in the front surface as a possible candidate for improving the absorption. The nanostructured film was realized by a simpler and cheaper method than using conventional lithographic techniques: A colloidal solution of metallic or semiconductor nanoparticles (NPs) was produced by laser ablation and, after a heating and sonication process, was spray-dried on the front surface of an aluminum target. The obtained nanostructured film with a thickness of 1 mu m appears, at morphological and chemical analysis, uniformly nanostructured and distributed on the target surface without the presence of oxides or external contaminants. Finally, the size of the NPs can be tuned from tens to hundreds of nanometers simply by varying the growth parameters (i.e., irradiation time, fluence, and laser beam energy).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Nanostructured colloidal metal and semiconductor particles
    Giersig, M
    ELECTRON MICROSCOPY 1998, VOL 3: MATERIALS SCIENCE 2, 1998, : 137 - 138
  • [2] Nanostructured colloidal metal and semiconductor particles
    Giersig, M.
    Materials Science Forum, 1999, 312 : 623 - 628
  • [3] Nanostructured tellurium semiconductor: from nanoparticles to nanorods
    Yuan, Q. Li
    Yin, H. Yong
    Nie, Q. Lin
    JOURNAL OF EXPERIMENTAL NANOSCIENCE, 2013, 8 (7-8) : 931 - 936
  • [4] The chemistry of metal and semiconductor nanoparticles
    Goh, Li May
    Pazmino, Jorge
    Washington, John A.
    Fujiwara, Mitsuko
    Braatz, Richard D.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233 : 139 - 139
  • [5] Nanostructured metal films: Fabrication and catalytic properties
    Rostovshchikova, TN
    Smirnov, VV
    Gurevich, SA
    Kozhevin, VM
    Yavsin, DA
    Nevskaya, SM
    Nikolaeva, SA
    Lokteva, ES
    CATALYSIS TODAY, 2005, 105 (3-4) : 344 - 349
  • [6] Nanostructured metal oxides' fabrication and environmental applications
    Li, Wei
    Cao, Changyan
    Bian, Shaowei
    Zhong, Liangshu
    Song, Weiguo
    Wan, Lijun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [7] FABRICATION OF METAL-SEMICONDUCTOR SUPERLATTICES
    HENZ, J
    OSPELT, M
    VONKANEL, H
    HELVETICA PHYSICA ACTA, 1988, 61 (1-2): : 100 - 103
  • [8] Hybrid Semiconductor Nanoparticles: π-Conjugated Ligands and Nanostructured Films
    Park, Yushin
    Advincula, Rigoberto C.
    CHEMISTRY OF MATERIALS, 2011, 23 (19) : 4273 - 4294
  • [9] Nanostructured transition-metal oxide semiconductor photoanodes
    Schembry, Henrique
    Hepel, Maria
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [10] Optical nonlinearity in nanocomposites based on metal alkanoates with hybrid metal/semiconductor and semiconductor/semiconductor nanoparticles
    Gridyakina, A.
    Bordyuh, H.
    Klimusheva, G.
    Bugaychuk, S.
    Fedorenko, D.
    Zhulai, D.
    Mirnaya, T.
    Yaremchuk, G.
    Polishchuk, A.
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 298