Disruptive neoclassical tearing mode seeding in DIII-D with implications for ITER

被引:22
|
作者
La Haye, R. J. [1 ]
Chrystal, C. [1 ]
Strait, E. J. [1 ]
Callen, J. D. [2 ]
Hegna, C. C. [2 ]
Howell, E. C. [3 ]
Okabayashi, M. [4 ]
Wilcox, R. S. [5 ]
机构
[1] Gen Atom, San Diego, CA 92121 USA
[2] Univ Wisconsin, Madison, WI USA
[3] Tech X Corp, Boulder, CO USA
[4] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[5] Oak Ridge Natl Lab, Oak Ridge, TN USA
关键词
tearing; stability; tokamak; BETA;
D O I
10.1088/1741-4326/ac351f
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
New studies identify the critical parameters and physics governing disruptive neoclassical tearing mode (NTM) onset. An m/n = 2/1 mode in DIII-D that begins to grow robustly after a seeding event (edge localized mode ELM or sawtooth precursor and crash) causes the mode rotation to drop close to the plasma's E (r) = 0 rest frame; this condition opens the stabilizing ion-polarization current 'gate' and destabilizes an otherwise marginally stable NTM. Our new experimental and theoretical insights and novel toroidal theory-based modeling are benchmarked and scalable to ITER and other future experiments. The nominal ITER rotation at q = 2 is found to be stabilizing ('gate closed') except for MHD-induced transients that could 'open the gate'. Extrapolating from the DIII-D ITER baseline scenario (IBS) discharges, MHD transients are much more likely to destabilize problematic robustly growing 2/1 NTMs in ITER; this makes predictions of seeding and control of both ELMs and sawteeth imperative for more than just minimizing divertor pulsed-heat loading.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The causes of the disruptive tearing instabilities of the ITER Baseline Scenario in DIII-D
    Turco, F.
    Luce, T. C.
    Solomon, W.
    Jackson, G.
    Navratil, G. A.
    Hanson, J. M.
    NUCLEAR FUSION, 2018, 58 (10)
  • [2] Advanced techniques for neoclassical tearing mode control in DIII-D
    Volpe, F. A. G.
    Austin, M. E.
    La Haye, R. J.
    Lohr, J.
    Prater, R.
    Strait, E. J.
    Welander, A. S.
    PHYSICS OF PLASMAS, 2009, 16 (10)
  • [3] Control of neoclassical tearing modes in DIII-D
    La Haye, RJ
    Günter, S
    Humphreys, DA
    Lohr, J
    Luce, TC
    Maraschek, ME
    Petty, CC
    Prater, R
    Scoville, JT
    Strait, EJ
    PHYSICS OF PLASMAS, 2002, 9 (05) : 2051 - 2060
  • [4] Resistive wall tearing mode disruptions in DIII-D and ITER tokamaks
    Strauss, H. R.
    Lyons, B. C.
    Knolker, M.
    PHYSICS OF PLASMAS, 2022, 29 (11)
  • [5] Modelling and experiment to stabilize disruptive tearing modes in the ITER baseline scenario in DIII-D
    Turco, F.
    Luce, T. C.
    Boyes, W.
    Hanson, J. M.
    Hyatt, A. W.
    NUCLEAR FUSION, 2024, 64 (07)
  • [6] Seeding of neoclassical tearing modes by internal crash events in the ASDEX Upgrade and DIII-D tokamaks
    Igochine, V
    Gude, A.
    Guenter, S.
    Hanson, J. M.
    Lackner, K.
    Paz-Soldan, C.
    Strait, E.
    Zohm, H.
    NUCLEAR FUSION, 2019, 59 (06)
  • [7] The influence of rotation on the βN threshold for the 2/1 neoclassical tearing mode in DIII-D
    Buttery, R. J.
    La Haye, R. J.
    Gohil, P.
    Jackson, G. L.
    Reimerdes, H.
    Strait, E. J.
    PHYSICS OF PLASMAS, 2008, 15 (05)
  • [8] Stabilization and prevention of the 2/1 neoclassical tearing mode for improved performance in DIII-D
    Prater, R.
    La Haye, R. J.
    Luce, T. C.
    Petty, C. C.
    Strait, E. J.
    Ferron, J. R.
    Humphreys, D. A.
    Isayama, A.
    Lohr, J.
    Nagasaki, K.
    Politzer, P. A.
    Wade, M. R.
    Welander, A. S.
    NUCLEAR FUSION, 2007, 47 (05) : 371 - 377
  • [9] Integrated simulations of saturated neoclassical tearing modes in DIII-D, Joint European Torus, and ITER plasmas
    Halpern, Federico D.
    Bateman, Glenn
    Kritz, Arnold H.
    PHYSICS OF PLASMAS, 2006, 13 (06)
  • [10] Tearing stable stationary ITER baseline operation in DIII-D
    Bardoczi, L.
    Dudkovskaia, A.
    Logan, N. C.
    Richner, N. J.
    Brown, A. C.
    Callen, J. D.
    La Haye, R. J.
    Strait, E. J.
    NUCLEAR FUSION, 2025, 65 (02)