Our purpose is to find positive solutions u is an element of D-1,D-2 (RN) of the semilinear elliptic problem - Deltau - lambdaV(x)u = h(x)u(p-1) for 2 < p. The functions V and h may have an indefinite sign and the linearized operator need not have a first (principal) eigenvalue, e.g. we allow V equivalent to 1. We give precise existence and nonexistence criteria, which depend on lambda and on the growth of h(-) and h(+)/V+. Existence theorems are obtained by constrained minimization. The mountain pass theorem leads to a second solution.
机构:
Taibah Univ, Coll Sci, Dept Math, Al Madinah Al Munawarah, Saudi Arabia
Tanta Univ, Fac Sci, Dept Math, Tanta, EgyptTaibah Univ, Coll Sci, Dept Math, Al Madinah Al Munawarah, Saudi Arabia
El-Abed, Amel
Dammak, Makkia
论文数: 0引用数: 0
h-index: 0
机构:
Taibah Univ, Coll Sci, Dept Math, Al Madinah Al Munawarah, Saudi Arabia
Univ Sfax, Fac Sci Sfax, Dept Math, Sfax, TunisiaTaibah Univ, Coll Sci, Dept Math, Al Madinah Al Munawarah, Saudi Arabia
Dammak, Makkia
Amor Ben Ali, Abir
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tunis El Manar, Fac Sci Tunis, Dept Math, Tunis, TunisiaTaibah Univ, Coll Sci, Dept Math, Al Madinah Al Munawarah, Saudi Arabia