Photosensitive polymer and semiconductors bridged by Au plasmon for photoelectrochemical water splitting

被引:54
|
作者
Fan, Weiqiang [1 ]
Chen, Chao [1 ]
Bai, Hongye [1 ]
Luo, Bifu [1 ]
Shen, Hongqiang [1 ]
Shi, Weidong [1 ]
机构
[1] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Peoples R China
基金
中国国家自然科学基金;
关键词
Photoelectrochemistry; Hydrogen production; TiO2; Plasmon; Polythiophene; TIO2 NANOWIRE ARRAYS; PHOTOCATALYTIC ACTIVITY; ENHANCED PROPERTIES; SOLAR-CELLS; POLYTHIOPHENE; NANOPARTICLES; SURFACE; GOLD; PHOTOACTIVITY; DEGRADATION;
D O I
10.1016/j.apcatb.2016.05.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Heterogeneous semiconductor has received increasing attention as promising photoelectrode matrix in photoelectrochemical (PEC) water splitting. However, the composition and optimization of heterostructure still limited the photoelectric transformation and PEC water splitting efficiencies. Here, an effective strategy was introduced to enhance PEC performance by sandwiching Au plasmon inside inorganic-organic hybrid heterostructure. We successfully fabricated TiO2 and polythiophene (PTh) heterostructure bridged by Au nanoparticles, and applied it in PEC water splitting for the first time. Compared with traditional TiO2 and TiO2/PTh, the as-prepared heterostructure photoelectrode exhibited the optimal photoelectric conversion (0.11%, at 0.22V vs Ag/AgCl) and PEC hydrogen production rate (2.929 mmol h(-1) m(-2), at 50 mW/cm(2) and 0.4V vs Ag/AgCl). The enhanced water splitting can be mainly contributed to the transparent PTh nanowires as the photosensitizer and Au nanoparticles as both electron-transport bridge and plasmonic sites. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:9 / 15
页数:7
相关论文
共 50 条
  • [1] Rational Design of Semiconductors for Photoelectrochemical Water Splitting
    Wei, Su-Huai
    SOLAR CHEMICAL ENERGY STORAGE (SOLCHES), 2013, 1568 : 37 - 39
  • [2] Charge dynamics in semiconductors for photoelectrochemical water splitting
    Santos, Ana M. S.
    Rodriguez-Gutierrez, Ingrid
    Morishita, Gustavo M.
    Lopes, Ricardo M.
    Souza, Flavio L.
    MATERIALS LETTERS, 2024, 357
  • [3] Perovskite semiconductors for photoelectrochemical water splitting applications
    Guerrero, Antonio
    Bisquert, Juan
    CURRENT OPINION IN ELECTROCHEMISTRY, 2017, 2 (01) : 144 - 147
  • [4] Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting
    Hisatomi, Takashi
    Kubota, Jun
    Domen, Kazunari
    CHEMICAL SOCIETY REVIEWS, 2014, 43 (22) : 7520 - 7535
  • [5] Photoelectrochemical water splitting based on chalcopyrite semiconductors: A review
    Khodabandeh, Farkhondeh
    Abdizadeh, Hossein
    Avanaki, Anahita Abdollahi
    Golobostanfard, Mohammad Reza
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 65 : 779 - 803
  • [6] Photosensitive polymer semiconductors
    E. L. Aleksandrova
    Semiconductors, 2004, 38 : 1115 - 1159
  • [7] Photosensitive polymer semiconductors
    Aleksandrova, EL
    SEMICONDUCTORS, 2004, 38 (10) : 1115 - 1159
  • [8] Plasmon-Enhanced Photoelectrochemical Water Splitting Using Au Nanoparticles Decorated on Hematite Nanoflake Arrays
    Wang, Lei
    Zhou, Xuemei
    Nhat Truong Nguyen
    Schmuki, Patrik
    CHEMSUSCHEM, 2015, 8 (04) : 618 - 622
  • [9] Enhancing photoelectrochemical water splitting with plasmonic Au nanoparticles
    Moon, Cheon Woo
    Choi, Min-Ju
    Hyun, Jerome Kartham
    Jang, Ho Won
    NANOSCALE ADVANCES, 2021, 3 (21): : 5981 - 6006
  • [10] Emerging materials for plasmon-assisted photoelectrochemical water splitting
    Subramanyam, Palyam
    Meena, Bhagatram
    Biju, Vasudevanpillai
    Misawa, Hiroaki
    Challapalli, Subrahmanyam
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2022, 51