Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries

被引:55
|
作者
Gao, Xuefeng [1 ]
Sha, Yujing [1 ]
Lin, Qian [1 ]
Cai, Rui [1 ]
Tade, Moses O. [2 ]
Shao, Zongping [1 ,2 ]
机构
[1] Nanjing Tech Univ, Coll Chem & Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Jiangsu, Peoples R China
[2] Curtin Univ, Dept Chem Engn, Perth, WA 6845, Australia
关键词
Lithium-ion batteries; Cathode; LiMn2O4; Combustion synthesis; Nanocrystalline; ELECTROCHEMICAL PERFORMANCE; SPINEL LIMN2O4; RATE CAPABILITY; NANORODS; OXIDE; NANOPARTICLES; NANOSPHERES; IMPROVEMENT; PHASE; FILM;
D O I
10.1016/j.jpowsour.2014.10.099
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, nanocrystalline LiMn2O4 was synthesized by a simple combustion method and investigated for its utility as the positive electrode of a lithium-ion battery. X-Ray Diffraction characterization demonstrated that a basic crystallized spinel phase was already formed in the primary product from the direct combustion process, while pure phase LiMn2O4 was obtained after further calcination in air at relatively low temperature of 600 C. Characterization by SEM and HR-TEM as well as BET analysis showed that the LiMn2O4 compound had a primary particle size of 40-80 nm and that those particles were partially sintered to form 0.2-0.8 mu m aggregates with few mesopores. The exposed surface area of the aggregates was low and mainly formed by the outer surfaces of the constituent particles, which is beneficial to reducing the interfacial area between the liquid electrolyte and LiMn2O4, thereby effectively mediating the Mn dissolution problem. As a result, the as-prepared LiMn2O4 showed a favorable capacity of 114 mAh g(-1) at a current rate of 0.2C and still retained a capacity of 84 mAh g(-1), at 5C. After 100 continuous cycles at 0.1C, a capacity of 108 mAh g-1 was still maintained, compared to 120 mAh g-1 at the first cycle. The results demonstrated that combustion synthesis-derived LiMn204 is a promising cathode material for lithium ion batteries (LIBs). (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:38 / 44
页数:7
相关论文
共 50 条
  • [1] Nanocrystalline and long cycling LiMn2O4 cathode material derived by a solution combustion method for lithium ion batteries
    Lu, CZ
    Fey, GTK
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2006, 67 (04) : 756 - 761
  • [2] LiMn2O4 cathode material for lithium ion batteries
    Sengupta, S.
    Roy, R. R.
    Mclean, A.
    Dasgupta, S.
    CANADIAN METALLURGICAL QUARTERLY, 2006, 45 (03) : 341 - 346
  • [3] ZnO-coated LiMn2O4 cathode material for lithium-ion batteries synthesized by a combustion method
    Li, Qi-Ling
    Xu, Wang-Qiong
    Bai, Hong-Li
    Guo, Jun-Ming
    Su, Chang-Wei
    IONICS, 2016, 22 (08) : 1343 - 1351
  • [4] ZnO-coated LiMn2O4 cathode material for lithium-ion batteries synthesized by a combustion method
    Qi-Ling Li
    Wang-Qiong Xu
    Hong-Li Bai
    Jun-Ming Guo
    Chang-Wei Su
    Ionics, 2016, 22 : 1343 - 1351
  • [5] Synthesis of LiMn2O4 cathode material for lithium ion batteries
    Li Yujing
    Wang Xueping
    Lu Changyuan
    PRZEMYSL CHEMICZNY, 2023, 102 (10): : 1013 - 1017
  • [6] Review of cathode material LiMn2O4 for lithium ion batteries
    Zheng, ZS
    Tang, ZL
    Zhang, ZT
    Shen, WC
    JOURNAL OF INORGANIC MATERIALS, 2003, 18 (02) : 257 - 263
  • [7] Electrochemical study on LiMn2O4 as cathode material for lithium ion batteries
    Wu, HM
    Tu, JP
    Chen, XT
    Li, Y
    Zhao, XB
    Cao, GS
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 586 (02) : 180 - 183
  • [8] A combustion method to prepare spinel phase LiMn2O4 cathode materials for lithium-ion batteries
    Yang, WS
    Zhang, G
    Xie, JY
    Yang, LL
    Liu, QG
    JOURNAL OF POWER SOURCES, 1999, 81 : 412 - 415
  • [9] Electrochemical investigations of cobalt-doped LiMn2O4 as cathode material for lithium-ion batteries
    Arora, P
    Popov, BN
    White, RE
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (03) : 807 - 815
  • [10] Studies on synthesis of cathode material LiMn2O4 for lithium-ion batteries and it's electrochemical performance
    Liu, X.Q.
    Liu, P.S.
    Chen, Z.Y.
    Chen, D.L.
    Zhang, B.L.
    Li, Q.
    Yu, Z.L.
    Gongneng Cailiao/Journal of Functional Materials, 2001, 32 (02): : 178 - 180