Superconvergence of Finite Element Approximations for the Fractional Diffusion-Wave Equation

被引:27
|
作者
Ren, Jincheng [1 ]
Long, Xiaonian [2 ,3 ,4 ]
Mao, Shipeng [2 ,3 ,4 ]
Zhang, Jiwei [5 ]
机构
[1] Henan Univ Econ & Law, Coll Math & Informat Sci, Zhengzhou 450045, Henan, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100190, Peoples R China
[5] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional diffusion-wave equation; Finite element method; Fully discrete scheme; Error estimate; NUMERICAL APPROXIMATION; SPACE; SUBDIFFUSION;
D O I
10.1007/s10915-017-0385-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the error estimates of fully discrete finite element approximation for the time fractional diffusion-wave equation are discussed. Based on the standard Galerkin finite element method approach for the spatial discretization and the L1 formula for the approximation of the time fractional derivative, the fully discrete scheme for solving the constant coefficient fractional diffusion-wave equation is obtained and the superconvergence estimate is proposed and analyzed. Further, a fully discrete finite element scheme is presented for solving the variable coefficient fractional diffusion-wave equation and the corresponding error estimates are also established. Finally, numerical experiments are included to support the theoretical results.
引用
收藏
页码:917 / 935
页数:19
相关论文
共 50 条
  • [1] Superconvergence of Finite Element Approximations for the Fractional Diffusion-Wave Equation
    Jincheng Ren
    Xiaonian Long
    Shipeng Mao
    Jiwei Zhang
    [J]. Journal of Scientific Computing, 2017, 72 : 917 - 935
  • [2] The Finite Element Approximations for Space Fractional Diffusion Equation
    Cao, Junying
    Wang, Ziqiang
    [J]. 2014 IEEE WORKSHOP ON ELECTRONICS, COMPUTER AND APPLICATIONS, 2014, : 805 - 808
  • [3] A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation
    Dehghan, Mehdi
    Abbaszadeh, Mostafa
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (08) : 2903 - 2914
  • [4] A Galerkin Finite Element Method to Solve Fractional Diffusion and Fractional Diffusion-Wave Equations
    Esen, Alaattin
    Ucar, Yusuf
    Yagmurlu, Nuri
    Tasbozan, Orkun
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2013, 18 (02) : 260 - 273
  • [5] The time discontinuous space-time finite element method for fractional diffusion-wave equation
    Zheng, Yunying
    Zhao, Zhengang
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 150 : 105 - 116
  • [6] A fast discontinuous finite element discretization for the space-time fractional diffusion-wave equation
    Liu, Zhengguang
    Cheng, Aijie
    Li, Xiaoli
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (06) : 2043 - 2061
  • [7] Two finite difference schemes for time fractional diffusion-wave equation
    Huang, Jianfei
    Tang, Yifa
    Vazquez, Luis
    Yang, Jiye
    [J]. NUMERICAL ALGORITHMS, 2013, 64 (04) : 707 - 720
  • [8] Two finite difference schemes for time fractional diffusion-wave equation
    Jianfei Huang
    Yifa Tang
    Luis Vázquez
    Jiye Yang
    [J]. Numerical Algorithms, 2013, 64 : 707 - 720
  • [9] Convergence and superconvergence analysis of finite element methods for the time fractional diffusion equation
    Li, Meng
    Shi, Dongyang
    Pei, Lifang
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 151 : 141 - 160
  • [10] Finite Difference and Sinc-Collocation Approximations to a Class of Fractional Diffusion-Wave Equations
    Mao, Zhi
    Xiao, Aiguo
    Yu, Zuguo
    Shi, Long
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,