Optimal High-Order Tensor SVD via Tensor-Train Orthogonal Iteration

被引:1
|
作者
Zhou, Yuchen [1 ,2 ]
Zhang, Anru R. [1 ,3 ,4 ]
Zheng, Lili [1 ,5 ]
Wang, Yazhen [1 ]
机构
[1] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[2] Univ Penn, Wharton Sch, Dept Stat & Data Sci, Philadelphia, PA 19104 USA
[3] Duke Univ, Dept Biostat & Bioinformat, Dept Comp Sci, Dept Math, Durham, NC 27710 USA
[4] Duke Univ, Dept Stat Sci, Durham, NC 27710 USA
[5] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Tensors; Markov processes; Computational modeling; Principal component analysis; Matrix decomposition; Approximation algorithms; Data science; Tensor SVD; tensor-train; high-order tensors; orthogonal iteration; minimax optimality; high-order Markov chain; MARKOV RANDOM-FIELD; PRINCIPAL COMPONENT ANALYSIS; MATRIX COMPLETION; APPROXIMATION; MODEL; DECOMPOSITIONS; AGGREGATION; RATES;
D O I
10.1109/TIT.2022.3152733
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies a general framework for high-order tensor SVD. We propose a new computationally efficient algorithm, tensor-train orthogonal iteration (TTOI), that aims to estimate the low tensor-train rank structure from the noisy high-order tensor observation. The proposed TTOI consists of initialization via TT-SVD [Oseledets (2011)] and new iterative backward/forward updates. We develop the general upper bound on estimation error for TTOI with the support of several new representation lemmas on tensor matricizations. By developing a matching information-theoretic lower bound, we also prove that TTOI achieves the minimax optimality under the spiked tensor model. The merits of the proposed TTOI are illustrated through applications to estimation and dimension reduction of high-order Markov processes, numerical studies, and a real data example on New York City taxi travel records. The software of the proposed algorithm is available online (https://github.com/Lili-Zheng-stat/TTOI).
引用
收藏
页码:3991 / 4019
页数:29
相关论文
共 50 条
  • [1] HIGH-ORDER TENSOR COMPLETION FOR DATA RECOVERY VIA SPARSE TENSOR-TRAIN OPTIMIZATION
    Yuan, Longhao
    Zhao, Qibin
    Cao, Jianting
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 1258 - 1262
  • [2] Completion of High Order Tensor Data with Missing Entries via Tensor-Train Decomposition
    Yuan, Longhao
    Zhao, Qibin
    Cao, Jianting
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 222 - 229
  • [3] TENSOR-TRAIN DECOMPOSITION
    Oseledets, I. V.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05): : 2295 - 2317
  • [4] High Performance Third-order Tensor-Train and Tensor-Ring Decompositions on GPUs
    Hong, Hao
    Tong, Weiqin
    Zhang, Tao
    Liu, Xiaoyang
    [J]. CEUR Workshop Proceedings, 2022, 3206 : 85 - 91
  • [5] High-order tensor completion via gradient-based optimization under tensor train format
    Yuan, Longhao
    Zhao, Qibin
    Gui, Lihua
    Cao, Jianting
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2019, 73 (53-61) : 53 - 61
  • [6] Tensor-Train Discriminant Analysis
    Sofuoglu, Seyyid Emre
    Aviyente, Selin
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3422 - 3426
  • [7] SPECTRAL TENSOR-TRAIN DECOMPOSITION
    Bigoni, Daniele
    Engsig-Karup, Allan P.
    Marzouk, Youssef M.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (04): : A2405 - A2439
  • [8] Accelerating Tensor Contraction Products via Tensor-Train Decomposition [Tips & Tricks]
    Kisil, Ilya
    Calvi, Giuseppe G.
    Konstantinidis, Kriton
    Xu, Yao Lei
    Mandic, Danilo P.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2022, 39 (05) : 63 - 70
  • [9] High-Performance Tensor-Train Primitives Using GPU Tensor Cores
    Liu, Xiao-Yang
    Hong, Hao
    Zhang, Zeliang
    Tong, Weiqin
    Kossaifi, Jean
    Wang, Xiaodong
    Walid, Anwar
    [J]. IEEE Transactions on Computers, 2024, 73 (11) : 2634 - 2648
  • [10] Provable Tensor-Train Format Tensor Completion by Riemannian Optimization
    Cai, Jian-Feng
    Li, Jingyang
    Xia, Dong
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23 : 1 - 77