A Comparative Study of Machine Learning Techniques for Emotion Recognition from Peripheral Physiological Signals

被引:0
|
作者
Vijayakumar, Sowmya [1 ]
Flynn, Ronan [1 ]
Murray, Niall [1 ]
机构
[1] Athlone Inst Technol, Dept Comp & Software Engn, Athlone, Co Westmeath, Ireland
关键词
peripheral physiological signals; emotion recognition; machine learning; wearables; classification;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent developments in wearable technology have led to increased research interest in using peripheral physiological signals for emotion recognition. The non-invasive nature of peripheral physiological signal measurement via wearables enables ecologically valid long-term monitoring. These peripheral signal measurements can be used in real-time in many ways including health and emotion classification. This paper investigates the utility of peripheral physiological signals for emotion recognition using the publicly available DEAP database. Using this database (which contains electroencephalogram (EEG) signals and peripheral signals), this paper compares eight machine learning models in the classification of valence and arousal emotion dimensions. These were applied to the peripheral physiological signals only. These models operate on three groupings of the peripheral data: (i) the raw peripheral physiological signals; (ii) individual feature sets extracted from each peripheral signal; and (iii) a fusion data set made of the combined features from the individual peripheral signals. The results indicate that support vector machine, linear discriminant analysis and logistic regression give the best recognition results on all three data groups considered. The feature fusion data set, which is made up by fusing all the features from the peripheral signals, gives the best recognition accuracy on both valence and arousal dimensions. In addition, subject dependency for emotion classification from peripheral signals is examined and significant individual variability is observed. The recognition rate varies between each participant from 10% to 87.5%.
引用
收藏
页码:80 / 85
页数:6
相关论文
共 50 条
  • [1] A comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals
    Vikrant Doma
    Matin Pirouz
    Journal of Big Data, 7
  • [2] A comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals
    Doma, Vikrant
    Pirouz, Matin
    JOURNAL OF BIG DATA, 2020, 7 (01)
  • [3] A machine learning model for emotion recognition from physiological signals
    Dominguez-Jimenez, J. A.
    Campo-Landines, K. C.
    Martinez-Santos, J. C.
    Delahoz, E. J.
    Contreras-Ortiz, S. H.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 55
  • [4] The Study of Emotion Recognition from Physiological Signals
    Li, Qing
    Yang, Zongkai
    Liu, Sanya
    Dai, Zhicheng
    Liu, Yang
    2015 SEVENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2015, : 378 - 382
  • [5] EMOTION RECOGNITION FROM PERIPHERAL PHYSIOLOGICAL SIGNALS ENHANCED BY EEG
    Chen, Shiyu
    Gao, Zhen
    Wang, Shangfei
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 2827 - 2831
  • [6] Multimodal machine learning approach for emotion recognition using physiological signals
    Ramadan, Mohamad A.
    Salem, Nancy M.
    Mahmoud, Lamees N.
    Sadek, Ibrahim
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 96
  • [7] A COMPARATIVE STUDY OF SVM KERNEL APPLIED TO EMOTION RECOGNITION FROM PHYSIOLOGICAL SIGNALS
    Maaoui, C.
    Pruski, A.
    2008 5TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS AND DEVICES, VOLS 1 AND 2, 2008, : 640 - 645
  • [8] HYPERCOMPLEX MULTIMODAL EMOTION RECOGNITION FROM EEG AND PERIPHERAL PHYSIOLOGICAL SIGNALS
    Lopez, Eleonora
    Chiarantano, Eleonora
    Grassucci, Eleonora
    Comminiello, Danilo
    2023 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW, 2023,
  • [9] Emotion Recognition from Physiological Signals Using Support Vector Machine
    Cheng, Bo
    SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING: THEORY AND PRACTICE, VOL 1, 2012, 114 : 49 - 52
  • [10] Emotion recognition from physiological signals
    Gouizi K.
    Bereksi Reguig F.
    Maaoui C.
    Journal of Medical Engineering and Technology, 2011, 35 (6-7): : 300 - 307