Achieving exceptional activity and durability toward oxygen reduction based on a cobalt-free perovskite for solid oxide fuel cells

被引:21
|
作者
Dong, Feifei [1 ]
Gao, Zhenghui [1 ]
Zhang, Bingkai [1 ]
Li, Lu [1 ]
Kong, Ziqi [1 ]
Ma, Zilin [1 ]
Ni, Meng [2 ]
Lin, Zhan [1 ]
机构
[1] Guangdong Univ Technol, Guangzhou Higher Educ Mega Ctr, Sch Chem Engn & Light Ind, Guangzhou Key Lab Clean Transportat Energy Chem, Guangzhou 510006, Guangdong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Bldg & Real Estate, Bldg Energy Res Grp, Hung Hom,Kowloon, Hong Kong 999077, Peoples R China
来源
关键词
Solid oxide fuel cell; Cathode; Perovskite; Oxygen reduction reaction; Cobalt-free; DOPED BAFEO3-DELTA PEROVSKITE; HIGH-PERFORMANCE CATHODE; B-SITE SUBSTITUTION; CO2; TOLERANCE; A-SITE; TEMPERATURE; ELECTRODE; ELECTROCATALYST; DEGRADATION; PHASE;
D O I
10.1016/j.jechem.2021.04.020
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In response to the shortcomings of cobalt-rich cathodes, iron-based perovskite oxides appear as promising alternatives for solid oxide fuel cells (SOFCs). However, their inferior electrochemical performance at reduced temperatures (<700 degrees C) becomes a major bottleneck for future progress. Here, a novel cobalt-free perovskite Ba0.75Sr0.25Fe0.875Ga0.125O3-delta (BSFG) is developed as an efficient oxygen reduction electrode for SOFCs, featuring cubic-symmetry structure, large oxygen vacancy concentration and fast oxygen transport. Benefiting from these merits, cells incorporated with BSFG achieve exceptionally high electrochemical performance, as evidenced by a low polarization area-specific resistance of 0.074 Omega cm(2) and a high peak power density of 1145 mW cm(-2) at 600 degrees C. Meanwhile, a robust short-term performance stability of BSFG cathode can be ascribed to the stable crystalline structure and favorable thermal expansion behavior. First-principles computations are also conducted to understanding the superior activity and durability toward oxygen reduction reaction. These pave the way for rationally developing highly active and robust cobalt-free perovskite-type cathode materials for reduced-temperature SOFCs. (C) 2021 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:653 / 659
页数:7
相关论文
共 50 条
  • [1] Achieving exceptional activity and durability toward oxygen reduction based on a cobalt-free perovskite for solid oxide fuel cells
    Feifei Dong
    Zhenghui Gao
    Bingkai Zhang
    Lu Li
    Ziqi Kong
    Zilin Ma
    Meng Ni
    Zhan Lin
    Journal of Energy Chemistry, 2021, 62 (11) : 653 - 659
  • [2] Cobalt-Free Perovskite Cathodes for Solid Oxide Fuel Cells
    Hashim, Siti Salwa
    Liang, Fengli
    Zhou, Wei
    Sunarso, Jaka
    CHEMELECTROCHEM, 2019, 6 (14) : 3549 - 3569
  • [3] Structural Engineering of Cobalt-Free Perovskite Enables Efficient and Durable Oxygen Reduction in Solid Oxide Fuel Cells
    Dong, Feifei
    Ma, Zilin
    Ye, Qirui
    Zhang, Bingkai
    Li, Lu
    Yang, Guangming
    Ni, Meng
    Lin, Zhan
    SMALL METHODS, 2022, 6 (06)
  • [4] Cobalt-Free Double Perovskite Oxide as a Promising Cathode for Solid Oxide Fuel Cells
    Zhang, Binze
    Zhang, Shaowei
    Han, Hairui
    Tang, Kaibin
    Xia, Changrong
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (06) : 8253 - 8262
  • [5] A cobalt-free layered oxide as an oxygen reduction catalyst for intermediate-temperature solid oxide fuel cells
    Jiang, Shanshan
    Zhou, Wei
    Sunarso, Jaka
    Ran, Ran
    Shao, Zongping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (45) : 15578 - 15584
  • [6] High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells
    Niu, Yingjie
    Zhou, Wei
    Sunarso, Jaka
    Ge, Lei
    Zhu, Zhonghua
    Shao, Zongping
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (43) : 9619 - 9622
  • [7] La-doped BaFeO3-δ perovskite as a cobalt-free oxygen reduction electrode for solid oxide fuel cells with oxygen-ion conducting electrolyte
    Dong, Feifei
    Chen, Dengjie
    Chen, Yubo
    Zhao, Qing
    Shao, Zongping
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (30) : 15071 - 15079
  • [8] Short review on cobalt-free cathodes for solid oxide fuel cells
    Baharuddin, Nurul Akidah
    Muchtar, Andanastuti
    Somalu, Mahendra Rao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (14) : 9149 - 9155
  • [9] Insights in to the Electrochemical Activity of Fe-Based Perovskite Cathodes toward Oxygen Reduction Reaction for Solid Oxide Fuel Cells
    Ma, Dan
    Gao, Juntao
    Xia, Tian
    Li, Qiang
    Sun, Liping
    Huo, Lihua
    Zhao, Hui
    COATINGS, 2020, 10 (12) : 1 - 10
  • [10] Enhancing Electrode Performance by Exsolved Nanoparticles: A Superior Cobalt-Free Perovskite Electrocatalyst for Solid Oxide Fuel Cells
    Yang, Guangming
    Zhou, Wei
    Liu, Meilin
    Shao, Zongping
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (51) : 35308 - 35314