This study proposes a class of non-linear realized stochastic volatility (SV) model by applying the Box-Cox (BC) transformation, instead of the logarithmic transformation, to the realized estimator. The non-Gaussian distributions such as Student's t, non-central Student's t, and generalized hyperbolic skew Student's t-distributions are applied to accommodate heavy-tailedness and skewness in returns. The proposed models are fitted to daily returns and realized kernel of six stocks: SP500, FTSE100, Nikkei225, Nasdaq100, DAX, and DJIA using an Markov chain Monte Carlo Bayesian method, in which the Hamiltonian Monte Carlo (HMC) algorithm updates BC parameter and the Riemann manifold HMC algorithm updates latent variables and other parameters that are unable to be sampled directly. Empirical studies provide evidence against both the logarithmic transformation and raw versions of realized SV model.