Hydrophobicity optimization of polypropylene hollow fiber membrane by sol-gel process for CO2 absorption in gas-liquid membrane contactor using response surface methodology

被引:8
|
作者
Amirabedi, Parya [1 ,2 ]
Yegani, Reza [1 ,2 ]
Hesaraki, Amir Hossein [1 ,2 ]
机构
[1] Sahand Univ Technol, Fac Chem Engn, Tabriz, Iran
[2] Sahand Univ Technol, Membrane Technol Res Ctr, Tabriz, Iran
关键词
Superhydrophobic membrane; Sol-gel; Response surface methodology (RSM); Membrane contactor; GRAFTED SILICA NANOPARTICLES; FABRICATION; SEPARATION; COLLAGEN; ACID; NANOCOMPOSITE; PARAMETERS; REMOVAL; PROTEIN; MATRIX;
D O I
10.1007/s13726-017-0532-2
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In membrane technology, wettability is one of the most crucial points for successful industrial application of membrane contactors. To solve this issue, a non-wetting polypropylene (PP) hollow fiber membrane was prepared by the incorporation of modified silica nano-particles (CH3SiO2) synthesized through sol-gel process on the surface and the cross-section of the membrane. Tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) were used as precursor and hydrophobic agent, respectively, to synthesize CH3SiO2 nanoparticles (NPs). In preparation procedure of NPs, the influential parameters including MTES/TEOS and H2O/TEOS molar ratios and NH4OH concentration were optimized using central composite design of response surface method (RSM) by considering contact angle (CA) as response variable. The CA of 168 degrees was obtained using analysis of variance (ANOVA) when the MTES/TEOS molar ratio, H2O/TEOS molar ratio and NH4OH concentration were, respectively, 3.774, 8.000 and 0.511 M. ATR-FTIR, FE-SEM, mechanical strength and porosity measurements were used to characterize the optimum membrane. The neat and modified membranes were also tested for the CO2 absorption process in a gasliquid membrane contactor system. The -CO2 absorption flux of modified membrane almost remained constant within 30 days, while the neat membrane slightly suffered from wetting problem, resulted in a continuous decline in the CO2 flux.
引用
收藏
页码:431 / 443
页数:13
相关论文
共 50 条
  • [1] Hydrophobicity optimization of polypropylene hollow fiber membrane by sol–gel process for CO2 absorption in gas–liquid membrane contactor using response surface methodology
    Parya Amirabedi
    Reza Yegani
    Amir Hossein Hesaraki
    Iranian Polymer Journal, 2017, 26 : 431 - 443
  • [2] Surface modification of polypropylene hollow fiber membranes using fluorosilane for CO2 absorption in a gas-liquid membrane contactor
    Kim, Kwanghwi
    Lee, Heejun
    Park, Hyun Sic
    Song, Hojun
    Kim, Suhan
    HELIYON, 2023, 9 (09)
  • [3] PVDF/CaCO3 composite hollow fiber membrane for CO2 absorption in gas-liquid membrane contactor
    Fosi-Kofal, M.
    Mustafa, A.
    Ismail, A. F.
    Rezaei-DashtArzhandi, M.
    Matsuura, T.
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2016, 31 : 428 - 436
  • [4] Effect of PVDF concentration on the morphology and performance of hollow fiber membrane employed as gas-liquid membrane contactor for CO2 absorption
    Ghasem, Nayef
    Al-Marzouqi, Mohamed
    Duidar, Ali
    SEPARATION AND PURIFICATION TECHNOLOGY, 2012, 98 : 174 - 185
  • [5] A novel process for oxygen absorption from air using hollow fiber gas-liquid membrane contactor
    Banazadeh, H.
    Mousavi, S. M.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2018, 193 : 283 - 288
  • [6] Removal of benzene from nitrogen by using polypropylene hollow fiber gas-liquid membrane contactor
    Xu, Jun
    Li, Rui
    Wang, Lianjun
    Li, Jiansheng
    Sun, Xiuyun
    SEPARATION AND PURIFICATION TECHNOLOGY, 2009, 68 (01) : 75 - 82
  • [7] Biocatalytic PVDF composite hollow fiber membranes for CO2 removal in gas-liquid membrane contactor
    Xu, Yilin
    Lin, Yuqing
    Chew, Nick Guan Pin
    Malde, Chandresh
    Wang, Rong
    JOURNAL OF MEMBRANE SCIENCE, 2019, 572 : 532 - 544
  • [8] Hydrophobic and hydrophilic hollow fiber membranes for Co2 stripping via gas-liquid membrane contactor
    Naim, R.
    Ismail, A. F.
    Mansourizadeh, A.
    EUROMEMBRANE CONFERENCE 2012, 2012, 44 : 328 - 331
  • [9] Absorption of CO2 Form Natural Gas via Gas-liquid PVDF Hollow Fiber Membrane Contactor and Potassium Glycinate as Solvent
    Ghasem, Nayef
    Al-Marzouqi, Mohamed
    Rahim, Nihmiya Abdul
    JURNAL TEKNOLOGI, 2014, 69 (09):
  • [10] Performance improvement of countercurrent-flow membrane gas absorption in a hollow fiber gas-liquid membrane contactor
    Ho, Chii-Dong
    Sung, Yun-Jen
    Chen, Wei-Ting
    Tsai, Feng-Chi
    MEMBRANE WATER TREATMENT, 2017, 8 (01) : 35 - 50