Allocating vertex π-guards in simple polygons via pseudo-triangulations

被引:0
|
作者
Speckmann, B [1 ]
Tóth, CD [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Theoret Comp Sci, CH-8092 Zurich, Switzerland
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the concept of pointed pseudo-triangulations to establish new upper and lower bounds on a well known problem from the area of art galleries: What is the worst case optimal number of vertex pi-guaxds that collectively monitor a simple polygon with n vertices? Our results are as follows: 1. Any simple polygon with n vertices can be monitored by at most [n/2] general vertex pi-guards. This bound is tight up to an additive constant of 1. 2. Any simple polygon with n vertices, k of which are convex, can be monitored by at most [(2n - k)/3] edge-aligned vertex pi-guaxds. This is the first nontrivial upper bound for this problem and it is tight for the worst case families of polygons known so far.
引用
收藏
页码:109 / 118
页数:10
相关论文
共 47 条
  • [1] Allocating vertex π-guards in simple polygons via pseudo-triangulations
    Speckmann, B
    Tóth, CD
    DISCRETE & COMPUTATIONAL GEOMETRY, 2005, 33 (02) : 345 - 364
  • [2] Allocating Vertex π-Guards in Simple Polygons via Pseudo-Triangulations
    Bettina Speckmann
    Csaba D. Tóth
    Discrete & Computational Geometry, 2005, 33 : 345 - 364
  • [3] Pseudo-triangulations - a survey
    Rote, Guenter
    Santos, Francisco
    Streinu, Ileana
    SURVEYS ON DISCRETE AND COMPUTATIONAL GEOMETRY: TWENTY YEARS LATER, 2008, 453 : 343 - +
  • [4] Transforming pseudo-triangulations
    Bereg, S
    INFORMATION PROCESSING LETTERS, 2004, 90 (03) : 141 - 145
  • [5] On numbers of pseudo-triangulations
    Ben-Ner, Mona
    Schulz, Andre
    Sheffer, Adam
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (06): : 688 - 699
  • [6] Combinatorial pseudo-triangulations
    Orden, David
    Santos, Francisco
    Servatius, Brigitte
    Servatius, Herman
    DISCRETE MATHEMATICS, 2007, 307 (3-5) : 554 - 566
  • [7] Transforming pseudo-triangulations
    Bespamyatnikh, S
    COMPUTATIONAL SCIENCE - ICCS 2003, PT I, PROCEEDINGS, 2003, 2657 : 533 - 539
  • [8] Enumerating pseudo-triangulations in the plane
    Bereg, S
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2005, 30 (03): : 207 - 222
  • [9] Minimum weight pseudo-triangulations
    Gudmundsson, J
    Levcopoulos, C
    FSTTCS 2004: FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE, 2004, 3328 : 299 - 310
  • [10] Minimum weight pseudo-triangulations
    Gudmundsson, Joachim
    Levcopoulos, Christos
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2007, 38 (03): : 139 - 153