Modelling of a Post-combustion CO2 Capture Process Using Bootstrap Aggregated Extreme Learning Machines

被引:11
|
作者
Bai, Zhongjing [1 ]
Li, Fei [1 ]
Zhang, Jie [1 ]
Oko, Eni [2 ]
Wang, Meihong [2 ]
Xiong, Z. [3 ]
Huang, D. [3 ]
机构
[1] Newcastle Univ, Sch Chem Engn & Adv Mat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Univ Hull, Sch Engn, Kingston Upon Hull HU6 7RX, N Humberside, England
[3] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
关键词
Carbon capture; data driven modelling; extreme learning machine; bootstrap re-sampling;
D O I
10.1016/B978-0-444-63428-3.50339-8
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This paper presents a study of modelling post-combustion CO2 capture process using bootstrap aggregated ELMs. The dynamic ELM models predict CO2 capture rate and CO2 capture level using the following variables as model inputs: inlet flue gas flow rate, CO2 concentration in inlet flue gas, pressure of flue gas, temperature of flue gas, lean solvent flow rate, MEA concentration and temperature of lean solvent. In order to enhance model accuracy and reliability, multiple ELM models are developed from bootstrap re-sampling replications of the original training data and combined. Bootstrap aggregated ELM model can offer more accurate and reliable predictions than a single ELM model, as well as provide model prediction confidence bounds. The developed models can be used in the optimisation of CO2 capture processes.
引用
收藏
页码:2007 / 2012
页数:6
相关论文
共 50 条
  • [1] Modelling of a Post-combustion CO2 Capture Process Using Extreme Learning Machine
    Li, Fei
    Zhang, Jie
    Oko, Eni
    Wang, Meihong
    [J]. 2016 21ST INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2016, : 1252 - 1257
  • [2] Modelling of a post-combustion CO2 capture process using extreme learning machine
    Li F.
    Zhang J.
    Oko E.
    Wang M.
    [J]. International Journal of Coal Science & Technology, 2017, 4 (1) : 33 - 40
  • [3] Modelling of a post-combustion CO2 capture process using neural networks
    Li, Fei
    Zhang, Jie
    Oko, Eni
    Wang, Meihong
    [J]. FUEL, 2015, 151 : 156 - 163
  • [4] Modelling of a post-combustion CO2 capture process using deep belief network
    Li, Fei
    Zhang, Jie
    Shang, Chao
    Huang, Dexian
    Oko, Eni
    Wang, Meihong
    [J]. APPLIED THERMAL ENGINEERING, 2018, 130 : 997 - 1003
  • [5] Adsorption-based process modelling for post-combustion CO2 capture
    Plaza, M. G.
    Duran, I.
    Rubiera, F.
    Pevida, C.
    [J]. 13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 2353 - 2361
  • [6] Overview Post-combustion CO2 capture
    Romeo, L. M.
    Bolea, I.
    [J]. BOLETIN DEL GRUPO ESPANOL DEL CARBON, 2015, (35): : 8 - 11
  • [7] MODELING OF THE CO2 CAPTURE IN POST-COMBUSTION
    Amann, Jean-Marc
    Descamps, Cathy
    Kanniche, Mohamed
    Bouallou, Chakib
    [J]. SCIENTIFIC STUDY AND RESEARCH-CHEMISTRY AND CHEMICAL ENGINEERING BIOTECHNOLOGY FOOD INDUSTRY, 2007, 8 (01): : 77 - 90
  • [8] Process analysis of intensified absorber for post-combustion CO2 capture through modelling and simulation
    Joel, Atuman S.
    Wang, Meihong
    Ramshaw, Colin
    Oko, Eni
    [J]. INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2014, 21 : 91 - 100
  • [9] Hybrid membrane cryogenic process for post-combustion Co2 capture
    Belaissaoui, B.
    Le Moullec, Y.
    Willson, D.
    Favre, E.
    [J]. EUROMEMBRANE CONFERENCE 2012, 2012, 44 : 417 - 421
  • [10] Optimization of solvent properties for post-combustion CO2 capture using process simulation
    Xin, Kun
    Gallucci, Fausto
    Annaland, Martin van Sint
    [J]. INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2020, 99