A Case Study of ICA with Multi-scale PCA of Simulated Traffic Data

被引:0
|
作者
Xie, Shengkun [1 ]
Lio, Pietro [2 ]
Lawniczak, Anna T. [1 ]
机构
[1] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[2] Univ Cambridge, Comp Lab, Cambridge CB30FD, England
基金
加拿大自然科学与工程研究理事会;
关键词
Independent Component Analysis; Multi-scale Principal Component Analysis; Wavelet Transform; De-nosing;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Often packet traffic data is non-stationary and non-gaussian. These data complexity causes difficulties in its analysis by standard techniques and new methods must be employed. Recent theoretical and applied works have demonstrated the appropriateness of wavelets for analyzing multivariate signals containing non-stationarity and non-gaussianity. This paper presents a new pre-processing method, a multi-scale PCA that combines a wavelet filtering method with principal component analysis (PCA), for a noise free independent component analysis (ICA) model. By applying the proposed method to a set of test data coining from simulations of a packet switching network (PSN) model we see improvements of data analysis results.
引用
收藏
页码:358 / +
页数:2
相关论文
共 50 条
  • [1] Sparse PCA - Extracting multi-scale structure from data
    Chennubhotla, C
    Jepson, A
    [J]. EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL I, PROCEEDINGS, 2001, : 641 - 647
  • [2] Multi-scale "spatial" analysis of computer network traffic data
    Kolaczyk, E
    Crovella, M
    [J]. PROCEEDINGS OF THE 2003 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING, 2003, : 144 - 144
  • [3] Analyze and Fault Diagnosis by Multi-scale PCA
    Lachouri, A.
    Baiche, K.
    Djeghader, R.
    Doghmane, N.
    Ouhtati, S.
    [J]. 2008 3RD INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES: FROM THEORY TO APPLICATIONS, VOLS 1-5, 2008, : 901 - 906
  • [4] Multi-scale ICA texture pattern for gender recognition
    Wu, M.
    Zhou, J.
    Sun, J.
    [J]. ELECTRONICS LETTERS, 2012, 48 (11) : 629 - 631
  • [5] Multi-Scale Detector for Accurate Vehicle Detection in Traffic Surveillance Data
    Kim, Kwang-Ju
    Kim, Pyong-Kun
    Chung, Yun-Su
    Choi, Doo-Hyun
    [J]. IEEE ACCESS, 2019, 7 : 78311 - 78319
  • [6] Trend-adaptive Multi-Scale PCA for Data Fault Detection in IoT Networks
    Thien-Binh Dang
    Manh-Hung Tran
    Duc-Tai Le
    Zalyubovskiy, Vyacheslav V.
    Ahn, Hyohoon
    Choo, Hyunseung
    [J]. 2018 32ND INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN), 2018, : 744 - 749
  • [7] Classification of EEG Signals by Multi-Scale Filtering and PCA
    Ke, Li
    Li, Rui
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 1, 2009, : 362 - 366
  • [8] Multi-scale assimilation of simulated SWOT observations
    Souopgui, Innocent
    D'Addezio, Joseph M.
    Rowley, Clark D.
    Smith, Scott R.
    Jacobs, Gregg A.
    Helber, Robert W.
    Yaremchuk, Max
    Osborne, John J.
    [J]. OCEAN MODELLING, 2020, 154
  • [9] Multi-scale analysis of simulated capillary instability
    Dumouchel, Christophe
    Aniszewski, Wojciech
    Trung-Thanh Vu
    Menard, Thibaut
    [J]. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2017, 92 : 181 - 192
  • [10] The Fault Detection of Multi-Sensor Based on Multi-Scale PCA
    Wang, Zhanfeng
    Du, Hailian
    Lv, Feng
    Du, Wenxia
    [J]. 2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 4697 - 4700