Experimental demonstration of efficient quantum state tomography of matrix product states

被引:8
|
作者
Zhao, Yuan-Yuan [1 ,2 ]
Hou, Zhibo [1 ,2 ]
Xiang, Guo-Yong [1 ,2 ]
Han, Yong-Jian [1 ,2 ]
Li, Chuan-Feng [1 ,2 ]
Guo, Guang-Can [1 ,2 ]
机构
[1] Univ Sci & Technol China, CAS, Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
来源
OPTICS EXPRESS | 2017年 / 25卷 / 08期
基金
中国国家自然科学基金;
关键词
Compendex;
D O I
10.1364/OE.25.009010
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum state tomography is a key technology for fully determining a quantum state. Unfortunately, standard quantum state tomography is intractable for general many-body quantum states, because the number of measurements and the post-processing time increase exponentially with the size of the system. However, for the matrix product states (MPSs), there exists an efficient method using linearly scaled local measurements and polynomially scaled post-processing times. In this study, we demonstrate the validity of the method in practice by reconstructing a four-photon MPS from its local two-or three-photon reduced-density matrices with the presence of statistical errors and systematical errors in experiment. (C) 2017 Optical Society of America
引用
收藏
页码:9010 / 9018
页数:9
相关论文
共 50 条
  • [1] Quantum State Tomography for Matrix Product Density Operators
    Qin, Zhen
    Jameson, Casey
    Gong, Zhexuan
    Wakin, Michael B.
    Zhu, Zhihui
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (07) : 5030 - 5056
  • [2] Continuous matrix product state tomography of quantum transport experiments
    Haack, G.
    Steffens, A.
    Eisert, J.
    Huebener, R.
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [3] Experimental Demonstration of Quantum Overlapping Tomography
    Yang, Zhengning
    Ru, Shihao
    Cao, Lianzhen
    Zheludev, Nikolay
    Gao, Weibo
    PHYSICAL REVIEW LETTERS, 2023, 130 (05)
  • [4] Efficient simulation of ultrafast quantum nonlinear optics with matrix product states
    Yanagimoto, Ryotatsu
    Ng, Edwin
    Wright, Logan G.
    Onodera, Tatsuhiro
    Mabuchi, Hideo
    OPTICA, 2021, 8 (10) : 1306 - 1315
  • [5] Quantum state preparation of normal distributions using matrix product states
    Iaconis, Jason
    Johri, Sonika
    Zhu, Elton Yechao
    NPJ QUANTUM INFORMATION, 2024, 10 (01)
  • [6] Quantum state preparation of normal distributions using matrix product states
    Jason Iaconis
    Sonika Johri
    Elton Yechao Zhu
    npj Quantum Information, 10
  • [7] Quantum State Designs with Clifford-Enhanced Matrix Product States
    Lami, Guglielmo
    Haug, Tobias
    De Nardis, Jacopo
    PRX Quantum, 2025, 6 (01):
  • [8] Matrix product state approximations to quantum states of low energy variance
    Rai, Kshiti Sneh
    Cirac, J. Ignacio
    Alhambra, Alvaro M.
    QUANTUM, 2024, 8
  • [9] Efficient quantum state tomography
    Kanter, Gregory
    Kumar, Prem
    NATURE PHOTONICS, 2023, 17 (11) : 925 - 926
  • [10] Efficient quantum state tomography
    Marcus Cramer
    Martin B. Plenio
    Steven T. Flammia
    Rolando Somma
    David Gross
    Stephen D. Bartlett
    Olivier Landon-Cardinal
    David Poulin
    Yi-Kai Liu
    Nature Communications, 1